Jump to content

Infinite-order triangular tiling

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Tomruen (talk | contribs) at 22:50, 9 March 2013 (Related polyhedra and tiling). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Infinite-order triangular tiling
Infinite-order triangular tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 3
Schläfli symbol {3,∞}
Wythoff symbol ∞ | 3 2
Coxeter diagram
Symmetry group [∞,3], (*∞32)
Dual Order-3 apeirogonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the Infinite-order trianglar tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of {3,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.

This tiling is topologically related as a part of sequence of regular polyhedra with Schläfli symbol {3,p}.

*n32 symmetry mutation of regular tilings: {3,n}
Spherical Euclid. Compact hyper. Paraco. Noncompact hyperbolic
3.3 33 34 35 36 37 38 3 312i 39i 36i 33i
Paracompact uniform tilings in [∞,3] family
Symmetry: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)

=

=

=
=
or
=
or

=
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
Uniform duals
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞

= Other infinite-order trianglar tilings

A nonregular infinite-order trianglar tiling can be generated by a cursive process from a central triangle shown here:

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.