Jump to content

Convex bipartite graph

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Helpful Pixie Bot (talk | contribs) at 01:43, 12 May 2012 (ISBNs (Build KH)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In the mathematical field of graph theory, a convex bipartite graph is a bipartite graph with specific properties. A bipartite graph, (U ∪ VE), is said to be convex over the vertex set U if U can be enumerated such that for all v ∈ V the vertices adjacent to v are consecutive.

Convexity over V is defined analogously. A bipartite graph (U ∪ VE) that is convex over both U and V is said to be biconvex or doubly convex.

Formal definition

Let G = (U ∪ VE) be a bipartite graph, i.e, the vertex set is U ∪ V where U ∩ V = ∅. Let NG(v) denote the neighborhood of a vertex v ∈ V. The graph G is convex over U if and only if there exists a bijective mapping, fU → { 1, 2, ..., |U| − 1, |U|}, such that for all v ∈ V, for any two vertices x,y ∈ NG(v) ⊆ U there does not exist a z ∉ NG(v) such that f(x) < f(z) < f(y).

See also

References

  • W. Lipski Jr. (1981). "Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems". Acta Informatica. 15 (4): 329–346. doi:10.1007/BF00264533. Retrieved 2009-07-20. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  • Ten-hwang Lai (1997). "Bipartite permutation graphs with application to the minimum buffer size problem". Discrete Applied Mathematics. 74 (1): 33–55. doi:10.1016/S0166-218X(96)00014-5. Retrieved 2009-07-20. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  • Jeremy P. Spinrad (2003). Efficient graph representations. AMS Bookstore. p. 128. ISBN 978-0-8218-2815-1. Retrieved 2009-07-20.
  • Andreas Brandstädt (1999). Graph classes: a survey. SIAM. p. 94. ISBN 978-0-89871-432-6. Retrieved 2009-07-20. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)