Jump to content

Constructive function theory

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Sodin (talk | contribs) at 12:12, 19 June 2011 (Example: italic --> " "). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematical analysis, constructive function theory is a field which studies the connection between the smoothness of a function and its degree of approximation[1][2]. The term was coined by Sergei Bernstein.

Example

Let f be a -periodic function. Then f is α-Hölder for some 0<α<1 if and only if for every natural n there exists a trigonometric polynomial Pn of degree n such that

where C(f) is a positive number depending on f. The "only if" is due to Dunham Jackson, see Jackson's inequality; the "if" part is due to Sergei Bernstein, see Bernstein's theorem (approximation theory).

References

  • N.I.Achiezer (Akhiezer), Theory of approximation, Translated by Charles J. Hyman Frederick Ungar Publishing Co., New York 1956 x+307 pp.