Jump to content

Factorization system

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 75.101.94.207 (talk) at 05:26, 4 February 2011 (Orthogonality). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, it can be shown that every function can be written as the composite of a surjective function followed by an injective function. Factorization systems are a generalization of this situation in category theory.

Definition

A factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that:

  1. E and M both contain all isomorphisms of C and are closed under composition.
  2. Every morphism f of C can be factored as for some morphisms and .
  3. The factorization is functorial: if and are two morphisms such that for some morphisms and , then there exists a unique morphism making the following diagram commute:

Orthogonality

Two morphisms and are said to be orthogonal, denoted , if for every pair of morphisms and such that there is a unique morphism such that the diagram

commutes. This notion can be extended to define the orthogonals of sets of morphisms by

and

Since in a factorization system contains all the isomorphisms, the condition (3) of the definition is equivalent to

(3') and

Equivalent definition

The pair of classes of morphisms of C is a factorization system if and only if it satisfies the following conditions:

  1. Every morphism f of C can be factored as with and
  2. and

Weak factorization systems

Suppose and are two morphisms in a category C. Then has the left lifting property with respect to (resp. has the right lifting property with respect to ) when for every pair of morphisms and such that there is a (not necessarily unique!) morphism such that the diagram

commutes.

A weak factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that :

  1. The class E is exactly the class of morphisms having the left lifting property wrt the morphisms of M.
  2. The class M is exactly the class of morphisms having the right lifting property wrt the morphisms of E.
  3. Every morphism f of C can be factored as for some morphisms and .

References

  • Peter Freyd, Max Kelly (1972). "Categories of Continuous Functors I". Journal of Pure and Applied Algebra. 2.