Brownian motion and Riemann zeta function
In mathematics, the Brownian motion and the Riemann zeta function are two central objects of study originating from different fields - probability theory and analytic number theory - that have deep mathematical connections between them. The relationships between stochastic processes derived from the Brownian motion and the Riemann zeta function show in a sense inuitively the stochastic behaviour underlying the Riemann zeta function. A representation of the Riemann zeta function in terms of stochastic processes is called a stochastic representation.
Brownian Motion and the Riemann Zeta Function
[edit]Let denote the Riemann zeta function and the gamma function, then the Riemann xi function is defined as
satisfying the functional equation
It turns out that describes the moments of a probability distribution [1]
Brownian Bridge and Riemann Zeta Function
[edit]In 1987 Marc Yor and Philippe Biane proved that the random variable defined as the difference between the maximum and minimum of a Brownian bridge describes the same distribution. A Brownian bridge is a one-dimensional Brownian motion conditioned on .[2] They showed that
is a solution for the above moment equation. However, this is not the only process that follows this distribution.
Bessel Process and Riemann Zeta Function
[edit]A Bessel process of order is the Euclidean norm of a -dimensional Brownian motion. The process is defined as
Define the hitting time and let be an independent hitting time of another process. Define the random variable
then we have
Distribution
[edit]Let be the Radon–Nikodym density of the distribution , then the density satisfies the equation[4]
for the theta function[1]
An alternative parametrization yields[3]
with explicit form
where and
Bibliography
[edit]- Roger Mansuy and Marc Yor (2008). Aspects of Brownian Motion. Universitext. Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-49966-4. ISBN 978-3-540-22347-4.
References
[edit]- ^ a b c Roger Mansuy and Marc Yor (2008). Aspects of Brownian Motion. Universitext. Springer, Berlin, Heidelberg. pp. 165–167. doi:10.1007/978-3-540-49966-4. ISBN 978-3-540-22347-4.
- ^ Philippe Biane and Marc Yor (1987). "Valeurs principales associées aux temps locaux browniens". Bulletin de Science Mathématique (in French). 111: 23–101.
- ^ a b Philippe Biane, Jim Pitman, and Marc Yor (2001). "Probability laws related to the Jacobi theta and Riemann zeta function and Brownian excursions". Bulletin of the American Mathematical Society. 38 (4): 435–465. arXiv:math/9912170. doi:10.1090/S0273-0979-01-00912-0.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Roger Mansuy and Marc Yor (2008). Aspects of Brownian Motion. Universitext. Springer, Berlin, Heidelberg. pp. 165–167. doi:10.1007/978-3-540-49966-4. ISBN 978-3-540-22347-4.