From Wikipedia, the free encyclopedia
Examples of the Crystal Ball function.
The Crystal Ball function , named after the Crystal Ball Collaboration (hence the capitalized initial letters), is a probability density function (PDF) commonly used to model various lossy processes in high-energy physics such as Bremsstrahlung by electrons. It consists of a Gaussian core portion and a power-law low-end tail, below a certain threshold. The function itself and its first derivative are both continuous .
The Crystal Ball function is given by:
f
(
x
;
α
,
n
,
x
¯
,
σ
)
=
N
⋅
{
exp
(
−
(
x
−
x
¯
)
2
2
σ
2
)
,
for
x
−
x
¯
σ
>
−
α
A
⋅
(
B
−
x
−
x
¯
σ
)
−
n
,
for
x
−
x
¯
σ
⩽
−
α
,
{\displaystyle f(x;\alpha ,n,{\bar {x}},\sigma )=N\cdot {\begin{cases}\exp(-{\frac {(x-{\bar {x}})^{2}}{2\sigma ^{2}}}),&{\mbox{for }}{\frac {x-{\bar {x}}}{\sigma }}>-\alpha \\A\cdot (B-{\frac {x-{\bar {x}}}{\sigma }})^{-n},&{\mbox{for }}{\frac {x-{\bar {x}}}{\sigma }}\leqslant -\alpha \end{cases}},}
where
A
=
(
n
|
α
|
)
n
⋅
exp
(
−
|
α
|
2
2
)
{\displaystyle A=\left({\frac {n}{\left|\alpha \right|}}\right)^{n}\cdot \exp \left(-{\frac {\left|\alpha \right|^{2}}{2}}\right)}
,
B
=
n
|
α
|
−
|
α
|
{\displaystyle B={\frac {n}{\left|\alpha \right|}}-\left|\alpha \right|}
,
N
=
1
σ
(
C
+
D
)
{\displaystyle N={\frac {1}{\sigma (C+D)}}}
,
C
=
n
|
α
|
⋅
1
n
−
1
⋅
exp
(
−
|
α
|
2
2
)
{\displaystyle C={\frac {n}{\left|\alpha \right|}}\cdot {\frac {1}{n-1}}\cdot \exp \left(-{\frac {\left|\alpha \right|^{2}}{2}}\right)}
,
D
=
π
2
(
1
+
erf
(
|
α
|
2
)
)
{\displaystyle D={\sqrt {\frac {\pi }{2}}}\left(1+\operatorname {erf} \left({\frac {\left|\alpha \right|}{\sqrt {2}}}\right)\right)}
,
with the error function erf.
The parameters of the function (that are usually determined by a fit) are:
N
{\displaystyle N}
is a normalization factor (Skwarnicki 1986)
α
>
0
{\displaystyle \alpha >0}
defines the point where the PDF changes from a power-law to a Gaussian distribution
n
>
1
{\displaystyle n>1}
is the power of the power-law tail
x
¯
{\displaystyle {\bar {x}}}
and
σ
{\displaystyle \sigma }
are the mean and the standard deviation of the Gaussian
J. E. Gaiser, Appendix-F Charmonium Spectroscopy from Radiative Decays of the J/Psi and Psi-Prime, Ph.D. Thesis , SLAC-R-255 (1982). (This is a 205-page document in .pdf form – the function is defined on p. 178.)
M. J. Oreglia, A Study of the Reactions psi prime --> gamma gamma psi, Ph.D. Thesis , SLAC-R-236 (1980), Appendix D.
T. Skwarnicki, A study of the radiative CASCADE transitions between the Upsilon-Prime and Upsilon resonances, Ph.D Thesis , DESY F31-86-02(1986), Appendix E.
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families