„Saccharose“ – Versionsunterschied
[ungesichtete Version] | [gesichtete Version] |
Keine Bearbeitungszusammenfassung |
form mit AWB |
||
(667 dazwischenliegende Versionen von mehr als 100 Benutzern, die nicht angezeigt werden) | |||
Zeile 1: | Zeile 1: | ||
{{Infobox Chemikalie |
|||
'''Saccharose''' ist der Haushalts- oder Kristallzucker, der gemeinhin als "der [[Zucker]]" gilt. |
|||
| Strukturformel = [[Datei:Saccharose2.svg|300px|Struktur von Saccharose]] |
|||
| Kristallsystem = [[Monoklines Kristallsystem|monoklin]]-sphenoidisch |
|||
| Suchfunktion = C12H22O11 |
|||
| Andere Namen = * Sucrose |
|||
* α-<small>D</small>-Glucopyranosyl-(1-2)-β-<small>D</small>-fructofuranosid |
|||
* β-<small>D</small>-Fructofuranosyl-α-<small>D</small>-glucopyranosid |
|||
* Kristallzucker |
|||
* [[Rohrzucker]] |
|||
* Rübenzucker |
|||
* Haushaltszucker |
|||
* {{INCI|Name=SUCROSE |ID=38376 |Abruf=2020-05-22}} |
|||
| Summenformel = C<sub>12</sub>H<sub>22</sub>O<sub>11</sub> |
|||
| CAS = {{CASRN|57-50-1}} |
|||
| EG-Nummer = 200-334-9 |
|||
| ECHA-ID = 100.000.304 |
|||
| PubChem = 5988 |
|||
| ChemSpider = 5768 |
|||
| DrugBank = DB02772 |
|||
| Beschreibung = farb- und geruchloser kristalliner Feststoff mit süßem Geschmack<ref name="GESTIS" /><ref name="Roempp">{{RömppOnline|ID=RD-19-00037|Name=Saccharose|Abruf=2014-05-26}}</ref> |
|||
| Molare Masse = 342,30 g·[[mol]]<sup>−1</sup> |
|||
| Aggregat = fest |
|||
| Dichte = 1,57 g·cm<sup>−3</sup> (30 °C)<ref name="GESTIS">{{GESTIS|ZVG=11990|CAS=57-50-1|Name=Saccharose|Abruf=2015-08-21}}</ref> |
|||
| Schmelzpunkt = 185–186 [[Grad Celsius|°C]] (Zers. ab ca. 160 °C)<ref name="Roempp" /> |
|||
| Siedepunkt = |
|||
| Dampfdruck = |
|||
| Löslichkeit = sehr leicht löslich in Wasser (4,87 g je g Wasser bei 100 °C)<ref name="GESTIS" /> |
|||
| Quelle GHS-Kz = <ref name="GESTIS" /> |
|||
| GHS-Piktogramme = {{GHS-Piktogramme|-}} |
|||
| GHS-Signalwort = |
|||
| H = {{H-Sätze|-}} |
|||
| EUH = {{EUH-Sätze|-}} |
|||
| P = {{P-Sätze|-}} |
|||
| Quelle P = <ref name="GESTIS" /> |
|||
| ToxDaten = {{ToxDaten |Typ=LD50 |Organismus=Ratte |Applikationsart=oral |Wert=29,7 g·kg<sup>−1</sup> |Bezeichnung= |Quelle=<ref name="GESTIS" /> }} |
|||
}} |
|||
[[Datei:Würfelzucker -- 2018 -- 3582.jpg|mini|Zuckerwürfel]]'''Saccharose''' [{{IPA|zaxaˈroːzə}}] (zu {{laS|saccharum}} bzw. {{grcS|σάκχαρον|sákcharon}}, „Zucker“), umgangssprachlich '''Haushaltszucker''', Kristallzucker oder einfach [[Zucker]] genannt, ist ein [[Disaccharid]] aus [[Glucose|α-D-Glucopyranose]] und [[Fructose|β-D-Fructofuranose]] und somit ein [[Kohlenhydrate|Kohlenhydrat]]. Andere Bezeichnungen für Saccharose sind Rohrzucker, Rübenzucker, Raffinadezucker oder raffinierter Zucker, brauner Zucker (im karamellisierten raffinierten Zustand), Rohzucker (im zwar auch oft braunen, aber nicht damit zu verwechselnden ''unraffinierten'' Zustand). Vorwiegend im englischen Sprachbereich sowie im [[Internationale Nomenklatur für kosmetische Inhaltsstoffe|INCI]]-Code wird die Bezeichnung Sucrose verwendet. |
|||
''chem. Bezeichnung:'' alpha-D-Glucopyranosyl-(1<->2)-beta-D-Fructofuranosid. |
|||
[[Bild:Saccharose.png|thumb|right|200px|Saccharose]] |
|||
Vor allem [[Zuckerrübe]], [[Zuckerrohr]] und [[Zuckerpalme]] enthalten dieses Disaccharid in wirtschaftlich nutzbaren Mengen. In Saccharose sind je ein Molekül α-<small>D</small>-[[Glucose|Glucopyranose]] und β-<small>D</small>-[[Fructose|Fructofuranose]] über eine α,β-1,2-[[glycosidische Bindung]] als Voll[[Acetale|acetal]] verbunden. |
|||
Saccharose gehört wie andere Zuckerarten zu den [[Kohlenhydrate]]n. Sie ist ein [[Disaccharid]] (Zweifachzucker). Saccharose ist ein [[Dimer]] und besteht aus je einem [[Molekül]] alpha-D-[[Glukose]] und beta-D-[[Fructose]]. Diese beiden Moleküle sind über eine o-glycosidische Bindung miteinander verbunden, die sich unter Austritt eines Wassermoleküls über die OH-Gruppen der anomeren C-Atome miteinander gebildet hat. |
|||
Saccharose ist in Wasser gut löslich. Beim Erhitzen auf 185°C schmilzt es und bildet unter teilweiser Zersetzung eine braun werdende Schmelze ([[Karamell]]). |
|||
Die [[Konstitution (Chemie)|Konstitution]] wurde von [[Walter Norman Haworth]] aufgeklärt.<ref name="ABC Chemie">''Brockhaus ABC Chemie.'' VEB F. A. Brockhaus Verlag, Leipzig 1965, S. 1221.</ref> |
|||
Saccharose ist ein nicht reduzierendes Disaccharid. Nicht reduzierendes Disaccharide sind über ihre beiden anomeren C-Atome o-glykosidisch miteinander verknüpft, ihre chem. Bezeichnung endet mit -sid. |
|||
Dies bedeutet, dass im Saccharosemolekül die beiden Komponenten so miteinander verbunden vorliegen, dass unter Ringöffnung eine Aldehydgruppe weder vom Glukose- noch vom Fructosemolekül gebildet werden kann. Diese nicht reduzierenden Atomgruppierungen nennt man Acetale. Ein weiteres Beispiel für einen nicht reduzierenden Zucker ist beispielsweise [[Trehalose]] (alpha-D-Glucopyranosyl-(1<->1)-alpha-D-Glucopyranosid). |
|||
== Vorkommen, Gewinnung und Bedeutung in Pflanzen == |
|||
Saccharose wird von vielen [[Pflanzen]] mittels [[Photosynthese]] gebildet, für die Gewinnung des Haushaltszuckers sind vor allem [[Zuckerrübe]]n und [[Zuckerrohr]] von Bedeutung. |
|||
[[Datei:Zuckerrübe.jpg|mini|links|Die Zuckerrübe [''Beta vulgaris'' subsp. ''vulgaris'' (''Altissima''-Gruppe)] ist die bedeutendste [[Zuckerpflanze]] der [[Gemäßigte Breiten|gemäßigten Breiten]].]][[Datei:Cut sugarcane.jpg|mini|links|Zuckerrohr (''Saccharum officinarum'') enthält reichlich Saccharose.<ref name="Gossauer">[[Albert Gossauer]]: ''Struktur und Reaktivität der Biomoleküle''. Verlag Helvetica Chimica Acta, Zürich 2006, ISBN 3-906390-29-2, S. 340.</ref>]] Saccharose wird von vielen [[Pflanzen]] mittels [[Photosynthese]] gebildet, für die Gewinnung des Haushaltszuckers sind vor allem [[Zuckerrübe]]n, [[Zuckerrohr]] und [[Zuckerpalme]] (vornehmlich in Indonesien) von Bedeutung. In kleineren Mengen wird Saccharose auch aus dem Saft des [[Zuckerahorn]]s gewonnen. Zudem bildet der ausschließlich oder überwiegend Saccharose enthaltende [[Phloem]]saft vieler Pflanzen die Grundlage der [[Honig]]produktion – indem die [[Honigbiene|Bienen]] entweder direkt pflanzliche Absonderungen wie [[Nektar (Botanik)|Nektar]] oder aber die [[Honigtau]] genannten Ausscheidungen von Phloemsaft saugenden Insekten (v. a. [[Schnabelkerfe]]n wie [[Blattläuse]]n, [[Schildläuse]]n, [[Blattflöhe]]n, [[Mottenschildläuse]]n sowie verschiedener [[Zikaden]]) sammeln.<ref>Helmut Horn, Cord Lüllmann: ''Das große Honigbuch.'' 3. Auflage. Kosmos, Stuttgart 2006, ISBN 3-440-10838-4, S. 29–30.</ref> |
|||
=== Biosynthese === |
|||
Die englische Bezeichnung lautet: [[sucrose]]. |
|||
Die [[Biosynthese]] von Saccharose erfolgt im [[Cytoplasma]] von Pflanzenzellen aus den [[Hexose]]-[[Stoffwechselintermediat|Intermediaten]] [[UDP-Glucose]] und [[Fructose-6-phosphat]]. Die beiden [[Monosaccharide]] werden aus [[Triosephosphat]]en gebildet, die als Nettogewinn bei der [[Assimilation (Biologie)|Kohlenstoffassimilation]] der [[Photosynthese]] ([[Calvin-Zyklus]]) im [[Chloroplasten]] entstehen. Die beiden Triosephosphate [[Glycerinaldehyd-3-phosphat]] und [[Dihydroxyacetonphosphat]] werden entweder im Chloroplasten zur Synthese von [[Stärke]] (Speicherstärke) verwendet oder aus dem Chloroplasten ins [[Cytosol]] exportiert, wo daraus Hexosen entstehen, die der Synthese von Saccharose (oder weiteren Kohlenhydraten oder Aminosäuren) dienen. |
|||
Dazu wird zuerst [[Fructose-1,6-bisphosphat]] durch eine [[Kondensationsreaktion]] zwischen [[Glycerinaldehyd-3-phosphat]] und [[Dihydroxyacetonphosphat]] gebildet, das dann durch [[Phosphorylierung|Dephosphorylierung]] zu Fructose-6-P umgesetzt wird. |
|||
''Siehe auch:'' [[Calvin-Zyklus]] |
|||
Aus Fructose-6-P wird durch [[Isomerisierung]] auch Glucose-6-P gebildet, das durch anschließende Reaktion (nach voriger Umisomerisierung zu [[Glucose-1-phosphat]]) mit [[Uridintriphosphat]] (UTP) zu [[UDP-Glucose|Uridindiphosphat-Glucose]] (''UDP-Glucose'') aktiviert wird. |
|||
Die folgende Kondensation von UDP-Glucose und Fructose-6-P zu Saccharose-6-phosphat wird von dem Enzym [[Saccharose-phosphat-Synthase]] katalysiert. Die dafür nötige Energie bringt die Abspaltung von Uridindiphosphat (UDP). Zuletzt wird der Phosphatrest in einer irreversiblen Reaktion durch das Enzym Saccharose-phosphat-Phosphatase abgespalten, sodass Saccharose entsteht. |
|||
[[da:Sucrose]] |
|||
[[en:Sucrose]] |
|||
=== Bedeutung als Transportzucker === |
|||
[[eo:Sakarozo]] |
|||
Saccharose ist der wichtigste Transportzucker in Pflanzen. Dazu eignet sie sich besser als freie Hexosen, da sie als nicht-reduzierendes Disaccharid [[chemisch inert]] ist. Die durch die Photosynthese in grünen Pflanzenzellen bei Licht entstehende Saccharose gelangt durch [[Passiver Transport|passiven Transport]] in den [[Apoplast]]en und anschließend durch [[Aktiver Transport|aktiven Transport]] in das assimilatleitende [[Phloem]] der pflanzlichen [[Leitgewebe]]. Im Phloem wird sie zu anderen, nicht-photosynthetischen Geweben, wie z. B. Wachstumszonen oder Speichergeweben, transportiert. |
|||
[[es:Sacarosa]] |
|||
[[fr:Saccharose]] |
|||
Andere Transportzucker sind in manchen Pflanzenfamilien (z. B. [[Kürbisgewächse]], [[Walnussgewächse]]) [[Raffinose]]n. |
|||
[[ja:スクロース]] |
|||
[[nl:Sucrose]] |
|||
=== Abbau und Verwertung === |
|||
Für den Saccharose-Abbau in den Zielgeweben gibt es unterschiedliche Möglichkeiten. |
|||
In Wachstumszonen wie Spross- und Wurzelspitze ([[Meristem]]e) wird Saccharose aus dem Phloem [[Symplast|symplasmatisch]] durch [[Plasmodesmos|Plasmodesmata]] transportiert. In den Zellen wird sie in Umkehr der Synthesereaktion durch das Enzym Saccharose-Synthase mit UDP zu UDP-Glucose und Fructose gespalten. Die beiden Hexosen können zu Glucose-6-P umgeformt und z. B. zur Energiegewinnung in die [[Glycolyse]] eingeführt werden. |
|||
In Speichergeweben wird Saccharose [[apoplast]]isch aus dem Phloem zu den Zielzellen transportiert. Sie kann durch aktiven Transport in die Zelle aufgenommen werden und dort von der Saccharose-Synthase abgebaut werden. Der Großteil wird jedoch in der Zellwand von [[Invertase]]n in Glucose und Fructose gespalten. Die beiden Monosaccharide können durch [[Symport]]er von der Zelle aufgenommen werden, wo sie als Glucose-6-P in den Chloroplasten transportiert und zur Synthese von Speicherstärke verwendet werden. |
|||
== Eigenschaften == |
|||
=== Chemische Eigenschaften === |
|||
Die Saccharose gehört wie andere [[Zuckerart]]en zu den [[Kohlenhydrate]]n. Sie ist ein [[Disaccharid]] (Zweifachzucker). Saccharose entsteht durch [[Kondensationsreaktion]] (mit [[Wasserabspaltung]]) aus je einem [[Molekül]] α-<small>D</small>-[[Glucose]] ([[Pyranose]]form) und β-<small>D</small>-[[Fructose]] ([[Furanose]]form). Diese beiden Moleküle sind über eine α,β-1,2-[[glycosidische Bindung]] miteinander verbunden (Glucose-α1-2 Fructose). |
|||
Saccharose ist ein nicht-[[Reduktion (Chemie)|reduzierendes]] Disaccharid. Nicht-reduzierende Disaccharide sind über ihre beiden [[anomer]]en C-Atome ''O''-glycosidisch miteinander verknüpft, ihre chemische Bezeichnung endet mit ''-sid''. Dies bedeutet, dass im Saccharose-Molekül die beiden Komponenten so miteinander verbunden vorliegen, dass keine Aldehydgruppe unter Ringöffnung (weder vom Glucose- noch vom Fructose-Molekül) gebildet werden kann. Diese nicht-reduzierenden Atomgruppierungen nennt man [[Acetale]]. Acetale sind im Gegensatz zu [[Halbacetal]]en vergleichsweise stabil in basischem und neutralem Milieu. |
|||
Saccharose zeigt daher bei der stark alkalischen [[Fehling-Probe]] eine negative Nachweisreaktion. Bei der [[Seliwanoff-Probe]] reagiert Saccharose positiv.<ref>{{Literatur |Autor=Klaus Ruppersberg, Hanne Rautenstrauch, Wolfgang Proske |Titel=Kohlenhydratnachweise im Chemieunterricht – welche werden im Unterricht gelehrt, welche sollten gelehrt werden? Kohlenhydratnachweise im experimentellen Chemieunterricht unter Berücksichtigung von Sicherheitsaspekten |Datum=2022 |DOI=10.25656/01:28447 |Online=https://www.pedocs.de/frontdoor.php?source_opus=28447 |Abruf=2024-05-24}}</ref> |
|||
In saurer Lösung (z. B. im Magen) oder durch das Enzym [[Invertase]] wird das [[Dimer]] Saccharose in die [[Monomere]] [[Glucose]] und [[Fructose]] gespalten. Dabei ändert sich der mit einem [[Polarimeter]] beobachtbare spezifische Drehwinkel. Dieses Phänomen nennt man [[Mutarotation]]. Die Änderung des Drehwinkels wird als [[Inversion]] bezeichnet, das dabei entstehende Zuckergemisch nennt man [[Invertzucker]]. |
|||
=== Physikalische Eigenschaften === |
|||
==== Erhitzung und Verbrennung ==== |
|||
[[Datei:Caramel-3.jpg|mini|Erkalteter, zerbrochener Karamell]] |
|||
Beim Erhitzen von Saccharose auf 185 °C schmilzt sie und bildet unter Teilzersetzung und Oxidation eine braun werdende glasartige Schmelze ([[Karamell]]). |
|||
Die spezifische Wärmekapazität von Saccharose beträgt etwa 1,24 kJ / (kg K).<ref>{{Internetquelle |autor= |url=https://www.sachverstand-gutachten.de/veroeffentlichungen/GI_3_10_zuckerloeser.htm |titel=Kontinuierliche Zuckerlöser |werk= |hrsg= |datum= |abruf=2020-11-12 |sprache=}}</ref> |
|||
==== Wasserlöslichkeit ==== |
|||
Saccharose ist in Wasser sehr gut löslich, dabei ist eine erhebliche Volumenzunahme zu beobachten. Die Löslichkeit ist, wie bei den meisten Feststoffen, temperaturabhängig: |
|||
{| class="wikitable" |
|||
|+Löslichkeit von Saccharose in Wasser<ref>C. A. Browne: ''Handbook of Sugar Analysis.'' John Wiley and Sons, New York 1912.</ref> |
|||
|- |
|||
! Temperatur in °C |
|||
! [[Massenanteil|''ω'']] Saccharose / % |
|||
! g Saccharose / kg Wasser |
|||
! Dichte in g / cm³ |
|||
|- |
|||
| {{0}}0 |
|||
| 64,18 |
|||
| 1792 |
|||
| 1,31490 |
|||
|- |
|||
| {{0}}5 |
|||
| 64,88 |
|||
| 1847 |
|||
| 1,31920 |
|||
|- |
|||
| 10 |
|||
| 65,58 |
|||
| 1905 |
|||
| 1,32353 |
|||
|- |
|||
| 15 |
|||
| 66,33 |
|||
| 1970 |
|||
| 1,32804 |
|||
|- |
|||
| 20 |
|||
| 67,09 |
|||
| 2039 |
|||
| 1,33272 |
|||
|- |
|||
| 25 |
|||
| 67,89 |
|||
| 2114 |
|||
| 1,33768 |
|||
|- |
|||
| 30 |
|||
| 68,70 |
|||
| 2195 |
|||
| 1,34273 |
|||
|- |
|||
| 35 |
|||
| 69,55 |
|||
| 2284 |
|||
| 1,34805 |
|||
|- |
|||
| 40 |
|||
| 70,42 |
|||
| 2381 |
|||
| 1,35353 |
|||
|- |
|||
| 45 |
|||
| 71,32 |
|||
| 2487 |
|||
| 1,35923 |
|||
|- |
|||
| 50 |
|||
| 72,25 |
|||
| 2604 |
|||
| 1,36515 |
|||
|- |
|||
| 55 |
|||
| 73,20 |
|||
| 2731 |
|||
| 1,37124 |
|||
|- |
|||
| 60 |
|||
| 74,18 |
|||
| 2873 |
|||
| 1,37755 |
|||
|- |
|||
| 65 |
|||
| 75,18 |
|||
| 3029 |
|||
| 1,38404 |
|||
|- |
|||
| 70 |
|||
| 76,22 |
|||
| 3205 |
|||
| 1,39083 |
|||
|- |
|||
| 75 |
|||
| 77,27 |
|||
| 3399 |
|||
| 1,39772 |
|||
|- |
|||
| 80 |
|||
| 78,36 |
|||
| 3621 |
|||
| 1,40493 |
|||
|- |
|||
| 85 |
|||
| 79,46 |
|||
| 3868 |
|||
| 1,41225 |
|||
|- |
|||
| 90 |
|||
| 80,61 |
|||
| 4157 |
|||
| 1,41996 |
|||
|- |
|||
| 95 |
|||
| 81,77 |
|||
| 4486 |
|||
| 1,42778 |
|||
|- |
|||
| 100 |
|||
| 82,97 |
|||
| 4872 |
|||
| 1,43594 |
|||
|} |
|||
Bei 20 °C erhält man eine Lösung mit 67 % Massenanteil (''ω'') (Dichte 1,33 kg/l), bei 100 °C dagegen eine 83 gew.-prozentige gesättigte Lösung mit 83 % Massenanteil (''ω'') (Dichte 1,44 kg/l), die beim Abkühlen jedoch keine Kristalle mehr ausscheidet (gehinderte Kristallisation). Per Definition ist es damit eine unterkühlte Flüssigkeit. Es ist auch ohne großen Aufwand möglich, den Stoff in den [[Amorphes Material|amorphen]] glasartigen Zustand zu überbringen. Als Grundlage dient z. B. ein halbes Kilogramm Zucker, der in 100 ml kochendem [[Wasser]] gelöst wird. Als dünne Schicht in eine rechteckige [[Schale (Gefäß)|Schale]] gegossen, deren Boden mit [[Trennpapier|antihaftbeschichtetem Papier]] ausgelegt ist, ergibt das nach Erkalten eine „Glasscheibe“. |
|||
Auch in technologischer Hinsicht verhalten sich amorphe Zucker anders als kristalline (Komprimierfähigkeit, Oberflächeneigenschaften).<ref>{{Internetquelle |url=https://www.fei-bonn.de/gefoerderte-projekte/projektdatenbank/aif-12097-n.projekt |titel=Eigenschaften und Rekristallisation amorpher Zucker und Zuckeraustauschstoffe |hrsg=FEI-Bonn |abruf=2023-05-01}}</ref> |
|||
Eine Lösung mit 60 % Massenanteil (''ω'') siedet bei 105 °C, eine Lösung mit 80 % Massenanteil (''ω'') bei 113 °C und eine Lösung mit 90 % Massenanteil (''ω'') bei 132 °C. (Letztere Werte entnommen aus dem Phasendiagramm von Saccharose und Wasser bei 100 kPa.) |
|||
<!-- |
|||
Die folgende Tabelle gibt für verschiedene Konzentrationen den Zuckeranteil, die [[Dichte]] und den [[Brechungsindex]] (bei 20 °C) an: |
|||
'''Fehlerhafte Tablelle wird gerade überarbeitet''' |
|||
{| class="wikitable" |
|||
|+ Dichte von Saccharose-Lösungen |
|||
! A<br />% !! Zucker<br />g/l !! Wasser<br />g/l !! Dichte<br />kg/l !! Brechungs-<br />index |
|||
|- |
|||
| align="right" | {{0}}1 || align="right" | 10,0 || align="right" | 992,1 || align="right" | 1,002 || align="center" | 1,3344 |
|||
|- |
|||
| align="right" | {{0}}5 || align="right" | 50,9 || align="right" | 966,9 || align="right" | 1,018 || align="center" | 1,3403 |
|||
|- |
|||
| align="right" | 10 || align="right" | 103,8 || align="right" | 934,3 || align="right" | 1,038 || align="center" | 1,3478 |
|||
|- |
|||
| align="right" | 15 || align="right" | 158,9 || align="right" | 900,3 || align="right" | 1,059 || align="center" | 1,3557 |
|||
|- |
|||
| align="right" | 20 || align="right" | 216,2 || align="right" | 864,8 || align="right" | 1,081 || align="center" | 1,3639 |
|||
|- |
|||
| align="right" | 30 || align="right" | 338,1 || align="right" | 788,9 || align="right" | 1,127 || align="center" | 1,3812 |
|||
|- |
|||
| align="right" | 40 || align="right" | 470,6 || align="right" | 705,9 || align="right" | 1,177 || align="center" | 1,3999 |
|||
|- |
|||
| align="right" | 50 || align="right" | 614,8 || align="right" | 614,8 || align="right" | 1,230 || align="center" | 1,4201 |
|||
|- |
|||
| align="right" | 60 || align="right" | 771,9 || align="right" | 514,6 || align="right" | 1,287 || align="center" | 1,4419 |
|||
|- |
|||
| align="right" | 70 || align="right" | 943,1 || align="right" | 404,2 || align="right" | 1,347 || align="center" |1,4654 |
|||
|- |
|||
| align="right" | 80 || align="right" | 1129,4 || align="right" | 282,3 || align="right" | 1,412 || align="center" | 1,4906 |
|||
|} |
|||
In der ersten Spalte (A %) ist der Gewichtsanteil Zucker in Prozent angegeben; das ist die Dichte in [[Grad Brix]]. |
|||
Die drei Nachkommastellen der Dichte (in kg/l) sind die [[Grad Oechsle|Oechslegrade]]. |
|||
Beispiele: |
|||
* Eine Lösung von 300 g Zucker in 1000 g Wasser hat eine Dichte von 1,127 kg/l (127° Oechsle, 30° Brix). Damit beträgt das Volumen der Lösung 1,3kg / 1,127 kg/l = 1,154 l. |
|||
* Eine Zuckerlösung der Dichte 1,230 kg/l enthält gleiche Gewichtsanteile Zucker und Wasser (50° Brix). |
|||
Quelle: Tabelle D-231<ref>CRC Handbook of Chemistry and Physics, 55th Edition, CRC Press 1975</ref> |
|||
--> |
|||
==== Drehung von polarisiertem Licht ==== |
|||
Saccharose ist [[Chiralität (Chemie)|chiral]] und daher [[Optische Aktivität|optisch aktiv]]: In wässriger Lösung dreht Saccharose [[Polarisation|polarisiertes Licht]] im Uhrzeigersinn ([[spezifischer Drehwinkel]] α = +66,5°·ml·dm<sup>−1</sup>·g<sup>−1</sup><ref>''Brockhaus ABC Chemie.'' Verlag Harry Deutsch, Frankfurt/ Zürich 1965.</ref>). Durch Spaltung von Saccharose entsteht ein Gemisch ([[Invertzucker]]), das halb aus [[Glucose]] und halb aus [[Fructose]] besteht. Diese Mischung dreht polarisiertes Licht gegen den Uhrzeigersinn (spezifischer Drehwinkel α = −20°·ml·dm<sup>−1</sup>·g<sup>−1</sup>), man beobachtet also eine Umkehrung der Drehungsrichtung („Inversion“); das 1:1-Gemisch aus Fructose und Glucose wird daher auch als ''Invertzucker'' bezeichnet.<ref>{{Literatur |Autor=[[Adalbert Wollrab]] |Titel=Organische Chemie: Eine Einführung für Lehramts- und Nebenfachstudenten |Verlag=Springer |Datum=2014 |ISBN=978-3-642-45144-7 |Seiten=845}}</ref> |
|||
== Analytik == |
|||
Die zuverlässige qualitative und quantitative Bestimmung der Saccharose gelingt nach angemessener [[Probenvorbereitung]] in [[Urin]] und [[Blutplasma]] durch Kopplung der [[Hochleistungsflüssigkeitschromatographie]] mit der [[Massenspektrometrie]].<ref>M. K. Miah, U. Bickel, R. Mehvar: ''Development and validation of a sensitive UPLC-MS/MS method for the quantitation of [(13)C]sucrose in rat plasma, blood, and brain: Its application to the measurement of blood-brain barrier permeability.'' In: ''J Chromatogr B Analyt Technol Biomed Life Sci.'' 1015-1016, 15. März 2016, S. 105–110. PMID 26919445</ref><ref>P. Kubica, A. Kot-Wasik, A. Wasik, J. Namieśnik, P. Landowski: ''Modern approach for determination of lactulose, mannitol and sucrose in human urine using HPLC-MS/MS for the studies of intestinal and upper digestive tract permeability.'' In: ''J Chromatogr B Analyt Technol Biomed Life Sci.'' 907, 15. Oct 2012, S. 34–40. PMID 22985725</ref> Zur Bestimmung in pflanzlichem Material kann auch die Kopplung der [[Gaschromatographie]] mit der Massenspektrometrie eingesetzt werden. Dabei werden die zu bestimmenden Zucker in flüchtige [[Trimethylsilylgruppe|Trimethylsilylderivate]] umgewandelt.<ref>S. Moldoveanu, W. Scott, J. Zhu: ''Analysis of small carbohydrates in several bioactive botanicals by gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry.'' In: ''J Sep Sci.'' 38(21), Nov 2015, S. 3677–3686. PMID 26315495</ref> |
|||
== Süßkraft == |
|||
Die [[Süßkraft]] ist eine [[Größe der Dimension Zahl|dimensionslose Größe]], welche die relative Süße eines Stoffes angibt. Die Werte der Süßkraft beziehen sich dabei auf Saccharose, welcher eine Süßkraft von 1 zugeordnet wird.<ref name="roemppSüß">{{RömppOnline|ID=RD-19-04671|Name=Süßstoffe|Abruf=2012-12-08}}</ref> Die Süßkraft dient einem halbquantitativen Vergleich insbesondere zu anderen natürlichen oder künstlichen Süßungsmitteln. Süßungsmittel können eine mehrere hundert- oder tausendfache Süßkraft gegenüber Saccharose aufweisen. Ein [[Derivat (Chemie)|Derivat]] der Saccharose, [[Sucroseoctaacetat|<small>D</small>-(+)-Saccharoseoctaacetat]], gehört zu den bittersten bekannten Verbindungen. |
|||
== Verwendung von Zucker als Lebensmittel == |
|||
{{Hauptartikel|Zucker}} |
|||
Saccharose wird traditionell in vielfältiger Form als Lebensmittel und Lebensmittelzusatz verwendet. |
|||
{| class="wikitable sortable" style="text-align:center; margin:auto;" |
|||
|+Glucosegehalt in verschiedenen Pflanzen (in g/100 g)<ref name="www,nal,usda,gov">{{Internetquelle |url=https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/nutrient-data-laboratory/ |titel=Search the USDA National Nutrient Database for Standard Reference |hrsg=Nal,usda,gov |abruf=2014-12-10}}</ref> |
|||
|- |
|||
!Nahrungsmittel |
|||
!Gesamtkohlenhydrate<br />inkl. [[Ballaststoffe]] |
|||
!Gesamtzucker |
|||
!Fructose |
|||
!Glucose |
|||
!Saccharose |
|||
!Fructose/<br />Glucose<br />Verhältnis |
|||
!Saccharose<br />in % des<br />Gesamtzuckers |
|||
|- |
|||
!''Früchte'' || || || || || || || |
|||
|- |
|||
| [[Kulturapfel|Apfel]] || 13,8|| 10,4|| 5,9|| 2,4|| 2,1|| 2,0|| 19,9 |
|||
|- |
|||
| [[Aprikose]] || 11,1|| 9,2|| 0,9|| 2,4|| 5,9|| 0,7|| 63,5 |
|||
|- |
|||
| [[Dessertbanane|Banane]] || 22,8|| 12,2|| 4,9|| 5,0|| 2,4|| 1,0|| 20,0 |
|||
|- |
|||
| [[Feige]], getrocknet || 63,9|| 47,9|| 22,9|| 24,8|| 0,9|| 0,93|| 0,15 |
|||
|- |
|||
| [[Weintraube|Trauben]] || 18,1|| 15,5|| 8,1|| 7,2|| 0,2|| 1,1|| 1 |
|||
|- |
|||
| [[Orange (Frucht)|Orange]] || 12,5 || 8,5|| 2,25|| 2,0|| 4,3|| 1,1|| 50,4 |
|||
|- |
|||
| [[Pfirsich]] || 9,5|| 8,4|| 1,5|| 2,0|| 4,8|| 0,9|| 56,7 |
|||
|- |
|||
| [[Birne]] || 15,5|| 9,8|| 6,2|| 2,8|| 0,8|| 2,1|| 8,0 |
|||
|- |
|||
| [[Ananas]] || 13,1|| 9,9|| 2,1|| 1,7|| 6,0|| 1,1|| 60,8 |
|||
|- |
|||
| [[Pflaume]] || 11,4|| 9,9|| 3,1|| 5,1|| 1,6|| 0,66|| 16,2 |
|||
|- |
|||
!''Gemüse'' || || || || || || || |
|||
|- |
|||
| [[Rote Beete]] || 9,6|| 6,8|| 0,1|| 0,1|| 6,5||1,0|| 96,2 |
|||
|- |
|||
| [[Karotte]] || 9,6|| 4,7|| 0,6|| 0,6|| 3,6|| 1,0|| 77 |
|||
|- |
|||
| [[Paprika]] || 6,0|| 4,2|| 2,3|| 1,9|| 0,0|| 1,2|| 0,0 |
|||
|- |
|||
| [[Zwiebel]] || 7,6|| 5,0|| 2,0|| 2,3|| 0,7|| 0,9|| 14,3 |
|||
|- |
|||
| [[Süßkartoffel]] ||20,1|| 4,2|| 0,7|| 1,0|| 2,5|| 0,9|| 60,3 |
|||
|- |
|||
| [[Yamswurzel]] || 27,9|| 0,5|| Spuren|| Spuren|| Spuren|| – || Spuren |
|||
|- |
|||
| [[Zuckerrohr]] || || 13–18|| 0,2 – 1,0|| 0,2 – 1,0|| 11–16 || 1,0|| hoch |
|||
|- |
|||
| [[Zuckerrübe]] || || 17–18|| 0,1 – 0,5|| 0,1 – 0,5 || 16–17 || 1,0|| hoch |
|||
|- |
|||
!''Getreide'' || || || || || || || |
|||
|- |
|||
| [[Mais]] || 19,0|| 6,2|| 1,9|| 3,4|| 0,9|| 0,61|| 15,0 |
|||
|} |
|||
== Wirkung von Zuckerkonsum auf den Organismus == |
|||
Bis zur industriellen Revolution im 19. Jahrhundert war reiner Zucker breiten Bevölkerungsschichten in Mitteleuropa kaum zugänglich. Zucker wurde dem Körper hauptsächlich beim Genuss von Gemüse und Obst sowie von Honig zugeführt. Erst seit der Züchtung der Zuckerrübe um 1800 und dem Beginn der industriellen Raffination von Saccharose wurde der Organismus mit größeren Mengen von Zucker konfrontiert. |
|||
Hoher Zuckerkonsum kann, vor allem wenn es sich um „freien“ Zucker (englisch: ''free sugars'') handelt – gemeint sind Mono- und Disaccharide, die den Lebensmitteln vom Hersteller, Koch oder Verbraucher zugesetzt werden, und natürlicherweise in Honig, Sirup und Fruchtsäften enthaltener Zucker –, zu Übergewicht und damit zu einem erhöhten Krankheitsrisiko für [[Diabetes mellitus]] führen. |
|||
Studien von [[John Yudkin]] legen nahe, dass zwischen der Aufnahme von Zucker und der Häufigkeit von Herzinfarkten ein Zusammenhang besteht. Es wird diskutiert, ob Zucker die Entstehung von [[Krebs (Medizin)|Krebs]] fördert und ob eine zuckerfreie Nahrung das Wachstum von Krebs behindern kann. Diese These hat einige Anhänger auch unter Ärzten, wird aktiv erforscht und es gibt Initiativen für eine Krebsdiät, die auf zuckerfreier oder zuckerarmer Ernährung basiert.<ref>Ethan B. Butler, Yuhua Zhao, Cristina Muñoz-Pinedo, Jianrong Lu, Ming Tan: ''Stalling the engine of resistance: Targeting cancer metabolism to overcome therapeutic resistance.'' In: ''[[Cancer Research]].'' Bd. 73, Nr. 9, 2013, S. 2709–2717, [[doi:10.1158/0008-5472.CAN-12-3009]]. Abgerufen am 13. März 2014.</ref><ref>Linda C. Nebeling, Edith Lerner: ''Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer.'' In: ''Journal of the American Dietetic Association.'' Bd. 95, Nr. 6, 1995, S. 693–697, [[doi:10.1016/S0002-8223(95)00189-1]]. Abgerufen am 13. März 2014.</ref><ref>U. Schroeder, B. Himpe, R. Pries, R. Vonthein, S. Nitsch, B. Wollenberg: ''Decline of Lactate in Tumor Tissue After Ketogenic Diet: In vivo microdialysis study in patients with head and neck cancer.'' In: ''[[Nutrition and Cancer]].'' Bd. 65, Nr. 6, 2013, S. 843–849, [[doi:10.1080/01635581.2013.804579]]. Abgerufen am 13. März 2014.</ref><ref>Ashraf Virmani, Luigi Pinto, Zbigniew Binienda, Syed Ali: ''Food, nutrigenomics, and neurodegeneration-neuroprotection by what you eat!'' In: ''Molecular Neurobiology.'' Bd. 48, Nr. 2, 2013, S. 353–362, [[doi:10.1007/s12035-013-8498-3]]. Abgerufen am 13. März 2014.</ref><ref>{{Internetquelle |autor=Lisa Schönhaar |url=https://www.businessinsider.de/wer-weniger-zucker-zu-sich-nimmt-entzieht-krebszellen-die-nahrung-2017-10 |titel=Wer Weniger Zucker zu sich nimmt entzieht Krebszellen die Nahrung – Studie zeigt: Ihr könnt jetzt schon eine kleine Veränderung in eurer Ernährung vornehmen, um später Krebs zu vermeiden. |werk=[[Business Insider]] |datum=2017-10-16 |abruf=2019-05-31}}</ref> |
|||
Fehlende oder ungenügende Zahnpflege nach dem Konsum von zuckerhaltigen Nahrungsmitteln führt zur Bildung von [[Zahnkaries]]. Viele Zuckerarten können von Bakterien im Mund zu zahnschädigenden Säuren umgewandelt werden. Insbesondere wird Saccharose vom Bakterium [[Streptococcus mutans]] zu [[Dextrane]]n verarbeitet, mit deren Hilfe diese sich besonders hartnäckig an Zähne heften können. |
|||
Die [[Weltgesundheitsorganisation]] empfiehlt, dass der sogenannte freie Zucker höchstens 10 % der täglichen menschlichen Energieaufnahme ausmachen sollte und idealerweise auf 5 % reduziert werden sollte.<ref>[https://www.fao.org/3/AC911E/ac911e07.htm#bm07.1.3 ''Diet, Nutrition and the Prevention of Chronic Diseases'' (= ''WHO Technical Report Series.'' 916) table 6 auf S. 56.]</ref><ref name="who._WHOg">{{Internetquelle |url=https://www.who.int/mediacentre/news/releases/2015/sugar-guideline/en/ |titel=WHO guideline: sugar consumption recommendation |werk=[[Weltgesundheitsorganisation]] |datum=2015-03-04 |sprache=en |abruf=2019-05-31}}</ref> Dies wird in Industriestaaten zumeist überschritten. |
|||
== Weblinks == |
|||
{{Commonscat|Sucrose|Saccharose}} |
|||
{{Wiktionary}} |
|||
== Einzelnachweise == |
|||
<references /> |
|||
{{Normdaten|TYP=s|GND=4178816-3}} |
|||
[[Kategorie:Polyhydroxyoxan]] |
|||
[[Kategorie:Dihydroxyoxolan]] |
|||
[[Kategorie:Hydroxymethyloxan]] |
|||
[[Kategorie:Hydroxymethyloxolan]] |
|||
[[Kategorie:Disaccharid]] |
|||
[[Kategorie:Zucker (Warenkunde)| ]] |
|||
[[Kategorie:Pharmazeutischer Hilfsstoff]] |
|||
[[Kategorie:Reservestoff]] |
|||
[[Kategorie:Kaffeeinhaltsstoff]] |
|||
[[Kategorie:Monoklines Kristallsystem]] |
Aktuelle Version vom 6. März 2025, 20:15 Uhr
Strukturformel | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | ||||||||||||||||||||||
Kristallsystem |
monoklin-sphenoidisch | |||||||||||||||||||||
Allgemeines | ||||||||||||||||||||||
Name | Saccharose | |||||||||||||||||||||
Andere Namen |
| |||||||||||||||||||||
Summenformel | C12H22O11 | |||||||||||||||||||||
Kurzbeschreibung |
farb- und geruchloser kristalliner Feststoff mit süßem Geschmack[2][3] | |||||||||||||||||||||
Externe Identifikatoren/Datenbanken | ||||||||||||||||||||||
| ||||||||||||||||||||||
Eigenschaften | ||||||||||||||||||||||
Molare Masse | 342,30 g·mol−1 | |||||||||||||||||||||
Aggregatzustand |
fest | |||||||||||||||||||||
Dichte |
1,57 g·cm−3 (30 °C)[2] | |||||||||||||||||||||
Schmelzpunkt | ||||||||||||||||||||||
Löslichkeit |
sehr leicht löslich in Wasser (4,87 g je g Wasser bei 100 °C)[2] | |||||||||||||||||||||
Sicherheitshinweise | ||||||||||||||||||||||
| ||||||||||||||||||||||
Toxikologische Daten | ||||||||||||||||||||||
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). |

Saccharose [lateinisch saccharum bzw. altgriechisch σάκχαρον sákcharon, „Zucker“), umgangssprachlich Haushaltszucker, Kristallzucker oder einfach Zucker genannt, ist ein Disaccharid aus α-D-Glucopyranose und β-D-Fructofuranose und somit ein Kohlenhydrat. Andere Bezeichnungen für Saccharose sind Rohrzucker, Rübenzucker, Raffinadezucker oder raffinierter Zucker, brauner Zucker (im karamellisierten raffinierten Zustand), Rohzucker (im zwar auch oft braunen, aber nicht damit zu verwechselnden unraffinierten Zustand). Vorwiegend im englischen Sprachbereich sowie im INCI-Code wird die Bezeichnung Sucrose verwendet.
] (zuVor allem Zuckerrübe, Zuckerrohr und Zuckerpalme enthalten dieses Disaccharid in wirtschaftlich nutzbaren Mengen. In Saccharose sind je ein Molekül α-D-Glucopyranose und β-D-Fructofuranose über eine α,β-1,2-glycosidische Bindung als Vollacetal verbunden.
Die Konstitution wurde von Walter Norman Haworth aufgeklärt.[4]
Vorkommen, Gewinnung und Bedeutung in Pflanzen
[Bearbeiten | Quelltext bearbeiten]

Saccharose wird von vielen Pflanzen mittels Photosynthese gebildet, für die Gewinnung des Haushaltszuckers sind vor allem Zuckerrüben, Zuckerrohr und Zuckerpalme (vornehmlich in Indonesien) von Bedeutung. In kleineren Mengen wird Saccharose auch aus dem Saft des Zuckerahorns gewonnen. Zudem bildet der ausschließlich oder überwiegend Saccharose enthaltende Phloemsaft vieler Pflanzen die Grundlage der Honigproduktion – indem die Bienen entweder direkt pflanzliche Absonderungen wie Nektar oder aber die Honigtau genannten Ausscheidungen von Phloemsaft saugenden Insekten (v. a. Schnabelkerfen wie Blattläusen, Schildläusen, Blattflöhen, Mottenschildläusen sowie verschiedener Zikaden) sammeln.[6]
Biosynthese
[Bearbeiten | Quelltext bearbeiten]Die Biosynthese von Saccharose erfolgt im Cytoplasma von Pflanzenzellen aus den Hexose-Intermediaten UDP-Glucose und Fructose-6-phosphat. Die beiden Monosaccharide werden aus Triosephosphaten gebildet, die als Nettogewinn bei der Kohlenstoffassimilation der Photosynthese (Calvin-Zyklus) im Chloroplasten entstehen. Die beiden Triosephosphate Glycerinaldehyd-3-phosphat und Dihydroxyacetonphosphat werden entweder im Chloroplasten zur Synthese von Stärke (Speicherstärke) verwendet oder aus dem Chloroplasten ins Cytosol exportiert, wo daraus Hexosen entstehen, die der Synthese von Saccharose (oder weiteren Kohlenhydraten oder Aminosäuren) dienen.
Dazu wird zuerst Fructose-1,6-bisphosphat durch eine Kondensationsreaktion zwischen Glycerinaldehyd-3-phosphat und Dihydroxyacetonphosphat gebildet, das dann durch Dephosphorylierung zu Fructose-6-P umgesetzt wird. Aus Fructose-6-P wird durch Isomerisierung auch Glucose-6-P gebildet, das durch anschließende Reaktion (nach voriger Umisomerisierung zu Glucose-1-phosphat) mit Uridintriphosphat (UTP) zu Uridindiphosphat-Glucose (UDP-Glucose) aktiviert wird.
Die folgende Kondensation von UDP-Glucose und Fructose-6-P zu Saccharose-6-phosphat wird von dem Enzym Saccharose-phosphat-Synthase katalysiert. Die dafür nötige Energie bringt die Abspaltung von Uridindiphosphat (UDP). Zuletzt wird der Phosphatrest in einer irreversiblen Reaktion durch das Enzym Saccharose-phosphat-Phosphatase abgespalten, sodass Saccharose entsteht.
Bedeutung als Transportzucker
[Bearbeiten | Quelltext bearbeiten]Saccharose ist der wichtigste Transportzucker in Pflanzen. Dazu eignet sie sich besser als freie Hexosen, da sie als nicht-reduzierendes Disaccharid chemisch inert ist. Die durch die Photosynthese in grünen Pflanzenzellen bei Licht entstehende Saccharose gelangt durch passiven Transport in den Apoplasten und anschließend durch aktiven Transport in das assimilatleitende Phloem der pflanzlichen Leitgewebe. Im Phloem wird sie zu anderen, nicht-photosynthetischen Geweben, wie z. B. Wachstumszonen oder Speichergeweben, transportiert.
Andere Transportzucker sind in manchen Pflanzenfamilien (z. B. Kürbisgewächse, Walnussgewächse) Raffinosen.
Abbau und Verwertung
[Bearbeiten | Quelltext bearbeiten]Für den Saccharose-Abbau in den Zielgeweben gibt es unterschiedliche Möglichkeiten.
In Wachstumszonen wie Spross- und Wurzelspitze (Meristeme) wird Saccharose aus dem Phloem symplasmatisch durch Plasmodesmata transportiert. In den Zellen wird sie in Umkehr der Synthesereaktion durch das Enzym Saccharose-Synthase mit UDP zu UDP-Glucose und Fructose gespalten. Die beiden Hexosen können zu Glucose-6-P umgeformt und z. B. zur Energiegewinnung in die Glycolyse eingeführt werden.
In Speichergeweben wird Saccharose apoplastisch aus dem Phloem zu den Zielzellen transportiert. Sie kann durch aktiven Transport in die Zelle aufgenommen werden und dort von der Saccharose-Synthase abgebaut werden. Der Großteil wird jedoch in der Zellwand von Invertasen in Glucose und Fructose gespalten. Die beiden Monosaccharide können durch Symporter von der Zelle aufgenommen werden, wo sie als Glucose-6-P in den Chloroplasten transportiert und zur Synthese von Speicherstärke verwendet werden.
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Chemische Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Die Saccharose gehört wie andere Zuckerarten zu den Kohlenhydraten. Sie ist ein Disaccharid (Zweifachzucker). Saccharose entsteht durch Kondensationsreaktion (mit Wasserabspaltung) aus je einem Molekül α-D-Glucose (Pyranoseform) und β-D-Fructose (Furanoseform). Diese beiden Moleküle sind über eine α,β-1,2-glycosidische Bindung miteinander verbunden (Glucose-α1-2 Fructose).
Saccharose ist ein nicht-reduzierendes Disaccharid. Nicht-reduzierende Disaccharide sind über ihre beiden anomeren C-Atome O-glycosidisch miteinander verknüpft, ihre chemische Bezeichnung endet mit -sid. Dies bedeutet, dass im Saccharose-Molekül die beiden Komponenten so miteinander verbunden vorliegen, dass keine Aldehydgruppe unter Ringöffnung (weder vom Glucose- noch vom Fructose-Molekül) gebildet werden kann. Diese nicht-reduzierenden Atomgruppierungen nennt man Acetale. Acetale sind im Gegensatz zu Halbacetalen vergleichsweise stabil in basischem und neutralem Milieu.
Saccharose zeigt daher bei der stark alkalischen Fehling-Probe eine negative Nachweisreaktion. Bei der Seliwanoff-Probe reagiert Saccharose positiv.[7]
In saurer Lösung (z. B. im Magen) oder durch das Enzym Invertase wird das Dimer Saccharose in die Monomere Glucose und Fructose gespalten. Dabei ändert sich der mit einem Polarimeter beobachtbare spezifische Drehwinkel. Dieses Phänomen nennt man Mutarotation. Die Änderung des Drehwinkels wird als Inversion bezeichnet, das dabei entstehende Zuckergemisch nennt man Invertzucker.
Physikalische Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Erhitzung und Verbrennung
[Bearbeiten | Quelltext bearbeiten]
Beim Erhitzen von Saccharose auf 185 °C schmilzt sie und bildet unter Teilzersetzung und Oxidation eine braun werdende glasartige Schmelze (Karamell).
Die spezifische Wärmekapazität von Saccharose beträgt etwa 1,24 kJ / (kg K).[8]
Wasserlöslichkeit
[Bearbeiten | Quelltext bearbeiten]Saccharose ist in Wasser sehr gut löslich, dabei ist eine erhebliche Volumenzunahme zu beobachten. Die Löslichkeit ist, wie bei den meisten Feststoffen, temperaturabhängig:
Temperatur in °C | ω Saccharose / % | g Saccharose / kg Wasser | Dichte in g / cm³ |
---|---|---|---|
0 | 64,18 | 1792 | 1,31490 |
5 | 64,88 | 1847 | 1,31920 |
10 | 65,58 | 1905 | 1,32353 |
15 | 66,33 | 1970 | 1,32804 |
20 | 67,09 | 2039 | 1,33272 |
25 | 67,89 | 2114 | 1,33768 |
30 | 68,70 | 2195 | 1,34273 |
35 | 69,55 | 2284 | 1,34805 |
40 | 70,42 | 2381 | 1,35353 |
45 | 71,32 | 2487 | 1,35923 |
50 | 72,25 | 2604 | 1,36515 |
55 | 73,20 | 2731 | 1,37124 |
60 | 74,18 | 2873 | 1,37755 |
65 | 75,18 | 3029 | 1,38404 |
70 | 76,22 | 3205 | 1,39083 |
75 | 77,27 | 3399 | 1,39772 |
80 | 78,36 | 3621 | 1,40493 |
85 | 79,46 | 3868 | 1,41225 |
90 | 80,61 | 4157 | 1,41996 |
95 | 81,77 | 4486 | 1,42778 |
100 | 82,97 | 4872 | 1,43594 |
Bei 20 °C erhält man eine Lösung mit 67 % Massenanteil (ω) (Dichte 1,33 kg/l), bei 100 °C dagegen eine 83 gew.-prozentige gesättigte Lösung mit 83 % Massenanteil (ω) (Dichte 1,44 kg/l), die beim Abkühlen jedoch keine Kristalle mehr ausscheidet (gehinderte Kristallisation). Per Definition ist es damit eine unterkühlte Flüssigkeit. Es ist auch ohne großen Aufwand möglich, den Stoff in den amorphen glasartigen Zustand zu überbringen. Als Grundlage dient z. B. ein halbes Kilogramm Zucker, der in 100 ml kochendem Wasser gelöst wird. Als dünne Schicht in eine rechteckige Schale gegossen, deren Boden mit antihaftbeschichtetem Papier ausgelegt ist, ergibt das nach Erkalten eine „Glasscheibe“.
Auch in technologischer Hinsicht verhalten sich amorphe Zucker anders als kristalline (Komprimierfähigkeit, Oberflächeneigenschaften).[10]
Eine Lösung mit 60 % Massenanteil (ω) siedet bei 105 °C, eine Lösung mit 80 % Massenanteil (ω) bei 113 °C und eine Lösung mit 90 % Massenanteil (ω) bei 132 °C. (Letztere Werte entnommen aus dem Phasendiagramm von Saccharose und Wasser bei 100 kPa.)
Drehung von polarisiertem Licht
[Bearbeiten | Quelltext bearbeiten]Saccharose ist chiral und daher optisch aktiv: In wässriger Lösung dreht Saccharose polarisiertes Licht im Uhrzeigersinn (spezifischer Drehwinkel α = +66,5°·ml·dm−1·g−1[11]). Durch Spaltung von Saccharose entsteht ein Gemisch (Invertzucker), das halb aus Glucose und halb aus Fructose besteht. Diese Mischung dreht polarisiertes Licht gegen den Uhrzeigersinn (spezifischer Drehwinkel α = −20°·ml·dm−1·g−1), man beobachtet also eine Umkehrung der Drehungsrichtung („Inversion“); das 1:1-Gemisch aus Fructose und Glucose wird daher auch als Invertzucker bezeichnet.[12]
Analytik
[Bearbeiten | Quelltext bearbeiten]Die zuverlässige qualitative und quantitative Bestimmung der Saccharose gelingt nach angemessener Probenvorbereitung in Urin und Blutplasma durch Kopplung der Hochleistungsflüssigkeitschromatographie mit der Massenspektrometrie.[13][14] Zur Bestimmung in pflanzlichem Material kann auch die Kopplung der Gaschromatographie mit der Massenspektrometrie eingesetzt werden. Dabei werden die zu bestimmenden Zucker in flüchtige Trimethylsilylderivate umgewandelt.[15]
Süßkraft
[Bearbeiten | Quelltext bearbeiten]Die Süßkraft ist eine dimensionslose Größe, welche die relative Süße eines Stoffes angibt. Die Werte der Süßkraft beziehen sich dabei auf Saccharose, welcher eine Süßkraft von 1 zugeordnet wird.[16] Die Süßkraft dient einem halbquantitativen Vergleich insbesondere zu anderen natürlichen oder künstlichen Süßungsmitteln. Süßungsmittel können eine mehrere hundert- oder tausendfache Süßkraft gegenüber Saccharose aufweisen. Ein Derivat der Saccharose, D-(+)-Saccharoseoctaacetat, gehört zu den bittersten bekannten Verbindungen.
Verwendung von Zucker als Lebensmittel
[Bearbeiten | Quelltext bearbeiten]Saccharose wird traditionell in vielfältiger Form als Lebensmittel und Lebensmittelzusatz verwendet.
Nahrungsmittel | Gesamtkohlenhydrate inkl. Ballaststoffe |
Gesamtzucker | Fructose | Glucose | Saccharose | Fructose/ Glucose Verhältnis |
Saccharose in % des Gesamtzuckers |
---|---|---|---|---|---|---|---|
Früchte | |||||||
Apfel | 13,8 | 10,4 | 5,9 | 2,4 | 2,1 | 2,0 | 19,9 |
Aprikose | 11,1 | 9,2 | 0,9 | 2,4 | 5,9 | 0,7 | 63,5 |
Banane | 22,8 | 12,2 | 4,9 | 5,0 | 2,4 | 1,0 | 20,0 |
Feige, getrocknet | 63,9 | 47,9 | 22,9 | 24,8 | 0,9 | 0,93 | 0,15 |
Trauben | 18,1 | 15,5 | 8,1 | 7,2 | 0,2 | 1,1 | 1 |
Orange | 12,5 | 8,5 | 2,25 | 2,0 | 4,3 | 1,1 | 50,4 |
Pfirsich | 9,5 | 8,4 | 1,5 | 2,0 | 4,8 | 0,9 | 56,7 |
Birne | 15,5 | 9,8 | 6,2 | 2,8 | 0,8 | 2,1 | 8,0 |
Ananas | 13,1 | 9,9 | 2,1 | 1,7 | 6,0 | 1,1 | 60,8 |
Pflaume | 11,4 | 9,9 | 3,1 | 5,1 | 1,6 | 0,66 | 16,2 |
Gemüse | |||||||
Rote Beete | 9,6 | 6,8 | 0,1 | 0,1 | 6,5 | 1,0 | 96,2 |
Karotte | 9,6 | 4,7 | 0,6 | 0,6 | 3,6 | 1,0 | 77 |
Paprika | 6,0 | 4,2 | 2,3 | 1,9 | 0,0 | 1,2 | 0,0 |
Zwiebel | 7,6 | 5,0 | 2,0 | 2,3 | 0,7 | 0,9 | 14,3 |
Süßkartoffel | 20,1 | 4,2 | 0,7 | 1,0 | 2,5 | 0,9 | 60,3 |
Yamswurzel | 27,9 | 0,5 | Spuren | Spuren | Spuren | – | Spuren |
Zuckerrohr | 13–18 | 0,2 – 1,0 | 0,2 – 1,0 | 11–16 | 1,0 | hoch | |
Zuckerrübe | 17–18 | 0,1 – 0,5 | 0,1 – 0,5 | 16–17 | 1,0 | hoch | |
Getreide | |||||||
Mais | 19,0 | 6,2 | 1,9 | 3,4 | 0,9 | 0,61 | 15,0 |
Wirkung von Zuckerkonsum auf den Organismus
[Bearbeiten | Quelltext bearbeiten]Bis zur industriellen Revolution im 19. Jahrhundert war reiner Zucker breiten Bevölkerungsschichten in Mitteleuropa kaum zugänglich. Zucker wurde dem Körper hauptsächlich beim Genuss von Gemüse und Obst sowie von Honig zugeführt. Erst seit der Züchtung der Zuckerrübe um 1800 und dem Beginn der industriellen Raffination von Saccharose wurde der Organismus mit größeren Mengen von Zucker konfrontiert.
Hoher Zuckerkonsum kann, vor allem wenn es sich um „freien“ Zucker (englisch: free sugars) handelt – gemeint sind Mono- und Disaccharide, die den Lebensmitteln vom Hersteller, Koch oder Verbraucher zugesetzt werden, und natürlicherweise in Honig, Sirup und Fruchtsäften enthaltener Zucker –, zu Übergewicht und damit zu einem erhöhten Krankheitsrisiko für Diabetes mellitus führen.
Studien von John Yudkin legen nahe, dass zwischen der Aufnahme von Zucker und der Häufigkeit von Herzinfarkten ein Zusammenhang besteht. Es wird diskutiert, ob Zucker die Entstehung von Krebs fördert und ob eine zuckerfreie Nahrung das Wachstum von Krebs behindern kann. Diese These hat einige Anhänger auch unter Ärzten, wird aktiv erforscht und es gibt Initiativen für eine Krebsdiät, die auf zuckerfreier oder zuckerarmer Ernährung basiert.[18][19][20][21][22]
Fehlende oder ungenügende Zahnpflege nach dem Konsum von zuckerhaltigen Nahrungsmitteln führt zur Bildung von Zahnkaries. Viele Zuckerarten können von Bakterien im Mund zu zahnschädigenden Säuren umgewandelt werden. Insbesondere wird Saccharose vom Bakterium Streptococcus mutans zu Dextranen verarbeitet, mit deren Hilfe diese sich besonders hartnäckig an Zähne heften können.
Die Weltgesundheitsorganisation empfiehlt, dass der sogenannte freie Zucker höchstens 10 % der täglichen menschlichen Energieaufnahme ausmachen sollte und idealerweise auf 5 % reduziert werden sollte.[23][24] Dies wird in Industriestaaten zumeist überschritten.
Weblinks
[Bearbeiten | Quelltext bearbeiten]Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Eintrag zu SUCROSE in der CosIng-Datenbank der EU-Kommission, abgerufen am 22. Mai 2020.
- ↑ a b c d e f Eintrag zu Saccharose in der GESTIS-Stoffdatenbank des IFA, abgerufen am 21. August 2015. (JavaScript erforderlich)
- ↑ a b Eintrag zu Saccharose. In: Römpp Online. Georg Thieme Verlag, abgerufen am 26. Mai 2014.
- ↑ Brockhaus ABC Chemie. VEB F. A. Brockhaus Verlag, Leipzig 1965, S. 1221.
- ↑ Albert Gossauer: Struktur und Reaktivität der Biomoleküle. Verlag Helvetica Chimica Acta, Zürich 2006, ISBN 3-906390-29-2, S. 340.
- ↑ Helmut Horn, Cord Lüllmann: Das große Honigbuch. 3. Auflage. Kosmos, Stuttgart 2006, ISBN 3-440-10838-4, S. 29–30.
- ↑ Klaus Ruppersberg, Hanne Rautenstrauch, Wolfgang Proske: Kohlenhydratnachweise im Chemieunterricht – welche werden im Unterricht gelehrt, welche sollten gelehrt werden? Kohlenhydratnachweise im experimentellen Chemieunterricht unter Berücksichtigung von Sicherheitsaspekten. 2022, doi:10.25656/01:28447 (pedocs.de [abgerufen am 24. Mai 2024]).
- ↑ Kontinuierliche Zuckerlöser. Abgerufen am 12. November 2020.
- ↑ C. A. Browne: Handbook of Sugar Analysis. John Wiley and Sons, New York 1912.
- ↑ Eigenschaften und Rekristallisation amorpher Zucker und Zuckeraustauschstoffe. FEI-Bonn, abgerufen am 1. Mai 2023.
- ↑ Brockhaus ABC Chemie. Verlag Harry Deutsch, Frankfurt/ Zürich 1965.
- ↑ Adalbert Wollrab: Organische Chemie: Eine Einführung für Lehramts- und Nebenfachstudenten. Springer, 2014, ISBN 978-3-642-45144-7, S. 845.
- ↑ M. K. Miah, U. Bickel, R. Mehvar: Development and validation of a sensitive UPLC-MS/MS method for the quantitation of [(13)C]sucrose in rat plasma, blood, and brain: Its application to the measurement of blood-brain barrier permeability. In: J Chromatogr B Analyt Technol Biomed Life Sci. 1015-1016, 15. März 2016, S. 105–110. PMID 26919445
- ↑ P. Kubica, A. Kot-Wasik, A. Wasik, J. Namieśnik, P. Landowski: Modern approach for determination of lactulose, mannitol and sucrose in human urine using HPLC-MS/MS for the studies of intestinal and upper digestive tract permeability. In: J Chromatogr B Analyt Technol Biomed Life Sci. 907, 15. Oct 2012, S. 34–40. PMID 22985725
- ↑ S. Moldoveanu, W. Scott, J. Zhu: Analysis of small carbohydrates in several bioactive botanicals by gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry. In: J Sep Sci. 38(21), Nov 2015, S. 3677–3686. PMID 26315495
- ↑ Eintrag zu Süßstoffe. In: Römpp Online. Georg Thieme Verlag, abgerufen am 8. Dezember 2012.
- ↑ Search the USDA National Nutrient Database for Standard Reference. Nal,usda,gov, abgerufen am 10. Dezember 2014.
- ↑ Ethan B. Butler, Yuhua Zhao, Cristina Muñoz-Pinedo, Jianrong Lu, Ming Tan: Stalling the engine of resistance: Targeting cancer metabolism to overcome therapeutic resistance. In: Cancer Research. Bd. 73, Nr. 9, 2013, S. 2709–2717, doi:10.1158/0008-5472.CAN-12-3009. Abgerufen am 13. März 2014.
- ↑ Linda C. Nebeling, Edith Lerner: Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. In: Journal of the American Dietetic Association. Bd. 95, Nr. 6, 1995, S. 693–697, doi:10.1016/S0002-8223(95)00189-1. Abgerufen am 13. März 2014.
- ↑ U. Schroeder, B. Himpe, R. Pries, R. Vonthein, S. Nitsch, B. Wollenberg: Decline of Lactate in Tumor Tissue After Ketogenic Diet: In vivo microdialysis study in patients with head and neck cancer. In: Nutrition and Cancer. Bd. 65, Nr. 6, 2013, S. 843–849, doi:10.1080/01635581.2013.804579. Abgerufen am 13. März 2014.
- ↑ Ashraf Virmani, Luigi Pinto, Zbigniew Binienda, Syed Ali: Food, nutrigenomics, and neurodegeneration-neuroprotection by what you eat! In: Molecular Neurobiology. Bd. 48, Nr. 2, 2013, S. 353–362, doi:10.1007/s12035-013-8498-3. Abgerufen am 13. März 2014.
- ↑ Lisa Schönhaar: Wer Weniger Zucker zu sich nimmt entzieht Krebszellen die Nahrung – Studie zeigt: Ihr könnt jetzt schon eine kleine Veränderung in eurer Ernährung vornehmen, um später Krebs zu vermeiden. In: Business Insider. 16. Oktober 2017, abgerufen am 31. Mai 2019.
- ↑ Diet, Nutrition and the Prevention of Chronic Diseases (= WHO Technical Report Series. 916) table 6 auf S. 56.
- ↑ WHO guideline: sugar consumption recommendation. In: Weltgesundheitsorganisation. 4. März 2015, abgerufen am 31. Mai 2019 (englisch).