Geometreg Euclidaidd
| Delwedd:Dodecahedron.gif, Newton theorem.svg, HC R3-P3-A3-Pr3.png, Wallpaper group-p6m-4.jpg | |
| Enghraifft o: | maes o fewn mathemateg |
|---|---|
| Math | geometreg |
| Rhan o | geometreg |
| Dechreuwyd | 3 g CC |
| Yn cynnwys | Euclidean plane geometry |
| Dynodwyr | |
| Freebase | /M/02kvn |
| Quora | Euclidean-geometry |

Mae geometreg Euclidaidd yn system fathemategol a briodir i'r Groegwr Euclid, a ddisgrifiodd yn ei werslyfr ar geometreg: yr Elfennau. Mae dull Euclid yn cynnwys tybio set fach o wirebau (axioms), gan ddidynnu llawer o gynigion eraill (theoremau) o'r rhain. Er bod llawer o ganlyniadau Euclid wedi eu nodi gan fathemategwyr cynharach, Euclid oedd y cyntaf i ddangos sut y gallai'r gosodiadau hyn gyd-fynd â system gynhwysfawr a rhesymegol.[1][2][3]
Mae'r Elfennau'n dechrau gyda geometreg planau, sy'n dal i gael ei addysgu yn yr ysgol uwchradd fel y system o wirebau gyntaf, a'r enghreifftiau cyntaf o brawf ffurfiol. Mae ei waith yn datblygu ymhellach i'r geometreg solat o dri dimensiwn. Mae llawer o'r Elfennau yn nodi canfyddiadau a elwir, bellach, yn algebra a theori rhif, a esboniwyd mewn iaith geometrig.
Mae geometreg Euclidaidd yn enghraifft o 'geometreg synthetig', gan ei fod yn datblygu'n yn rhesymegol o wirebau, sy'n disgrifio priodweddau sylfaenol gwrthrychau geometrig megis pwyntiau a llinellau, i osodiadau am y gwrthrychau hynny, i gyd heb ddefnyddio cyfesurynnau i nodi'r gwrthrychau hynny. Mae hyn yn gwbwl wahanol i 'geometreg dadansoddol', sy'n defnyddio cyfesurynnau i gyfieithu cynigion geometrig i fformiwlâu algebraidd.[4]