Datei:Window function (rectangular).png
Seiteninhalte werden in anderen Sprachen nicht unterstützt.
Erscheinungsbild

Größe dieser Vorschau: 800 × 359 Pixel. Weitere Auflösungen: 320 × 144 Pixel | 640 × 287 Pixel | 1.024 × 460 Pixel | 1.280 × 575 Pixel | 2.500 × 1.123 Pixel
Originaldatei (2.500 × 1.123 Pixel, Dateigröße: 83 KB, MIME-Typ: image/png)
Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.
Übertragen aus en.wikipedia nach Commons durch Tiaguito.
Beschreibung
BeschreibungWindow function (rectangular).png | rectangular window and frequency response | |||
Datum | ||||
Quelle | Eigenes Werk | |||
Urheber | Bob K (original version), Olli Niemitalo | |||
Genehmigung (Weiternutzung dieser Datei) |
|
|||
Andere Versionen |
|
|||
Source code InfoField | The script below generates these .png images:
This script has not been tested in MATLAB. See the individual file histories for the simpler MATLAB scripts that were the basis of this script. Generation of svg files by minor modification of the script displayed visual artifacts and renderer incompatibilities that could not be easily fixed. The current script fixes the visual artifacts in the png file as a post-processing step. The script generates a semi-transparent grid by taking a weighted average of two images, one with the grid and one without.N Matlabfunction plotWindowLayer (w, N, gridded, wname, wspecifier)
M=32;
k=0:N-1;
dr = 120;
H = abs(fft([w zeros(1,(M-1)*N)]));
H = fftshift(H);
H = H/max(H);
H = 20*log10(H);
H = max(-dr,H);
figure('Position',[1 1 1200 520])
subplot(1,2,1)
set(gca,'FontSize',28)
area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
xlim([0 N-1])
if (min(w) >= -0.01)
ylim([0 1.05])
set(gca,'YTick', [0 : 0.1 : 1])
ylabel('amplitude','position',[-16 0.525 0])
else
ylim([-1 5])
set(gca,'YTick', [-1 : 1 : 5])
ylabel('amplitude','position',[-16 2 0])
endif
set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
grid(gridded)
set(gca,'LineWidth',2)
set(gca,'gridlinestyle','-')
xlabel('samples')
if (strcmp (wspecifier, ""))
title(cstrcat(wname,' window'))
else
title(cstrcat(wname,' window (', wspecifier, ')'))
endif
set(gca,'Position',[0.08 0.11 0.4 0.8])
set(gca,'XColor',[1 0 1])
set(gca,'YColor',[1 0 1])
subplot(1,2,2)
set(gca,'FontSize',28)
h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
set(h,'BaseValue',-dr)
ylim([-dr 6])
set(gca,'YTick', [0 : -10 : -dr])
set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
xlim([-M*N/2 M*N/2]/M)
grid(gridded)
set(findobj('Type','gridline'),'Color',[.871 .49 0])
set(gca,'LineWidth',2)
set(gca,'gridlinestyle','-')
ylabel('decibels')
xlabel('bins')
title('Frequency response')
set(gca,'Position',[0.59 0.11 0.4 0.8])
set(gca,'XColor',[1 0 1])
set(gca,'YColor',[1 0 1])
endfunction
function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")
if (strcmp (wfilespecifier, ""))
wfilespecifier = wspecifier;
endif
N = size(w)(2);
B = N*sum(w.^2)/sum(w)^2 % noise bandwidth (bins), set N = 4096 to get an accurate estimate
plotWindowLayer(w, N, "on", wname, wspecifier); % "gridded" = "on"
print temp1.png -dpng "-S2500,1165"
close
plotWindowLayer(w, N, "off", wname, wspecifier); % "gridded" = "off"
print temp2.png -dpng "-S2500,1165"
close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
I = imread ("temp1.png");
J = imread ("temp2.png");
info = imfinfo ("temp1.png");
w = info.Width;
c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
c = ((c != m) | (c != y)).*c;
I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
if (strcmp (wfilespecifier, ""))
imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
else
imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
endif
endfunction
N=128;
k=0:N-1;
w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")
w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")
w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")
w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")
w = ones(1,N);
plotWindow(w, "Rectangular")
w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")
w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")
w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")
alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")
w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")
w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")
w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")
sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")
w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")
alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")
alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")
tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma = (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")
w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")
w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")
w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")
tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")
tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")
alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")
| |||
Quelltext InfoField | Octave
|
Kurzbeschreibungen
Ergänze eine einzeilige Erklärung, was diese Datei darstellt.
In dieser Datei abgebildete Objekte
Motiv
Einige Werte ohne einen Wikidata-Eintrag
17. Dezember 2005
image/png
Dateiversionen
Klicke auf einen Zeitpunkt, um diese Version zu laden.
Version vom | Vorschaubild | Maße | Benutzer | Kommentar | |
---|---|---|---|---|---|
aktuell | 18:48, 9. Feb. 2013 | ![]() | 2.500 × 1.123 (83 KB) | Olli Niemitalo | Antialiasing, layout changes, larger font |
23:07, 17. Dez. 2005 | ![]() | 1.038 × 419 (7 KB) | Tiaguito~commonswiki | file size. color source: http://en.wikipedia.org/wiki/Window_Function | |
22:48, 17. Dez. 2005 | ![]() | 1.038 × 419 (8 KB) | Tiaguito~commonswiki | source: http://en.wikipedia.org/wiki/Window_Function author: http://en.wikipedia.org/wiki/User:Bob_K |
Dateiverwendung
Keine Seiten verwenden diese Datei.
Globale Dateiverwendung
Die nachfolgenden anderen Wikis verwenden diese Datei:
- Verwendung auf da.wikipedia.org
- Verwendung auf et.wikipedia.org