Zum Inhalt springen

Datei:Surface ionization of cesium.svg

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
Zur Beschreibungsseite auf Commons
aus Wikipedia, der freien Enzyklopädie

Originaldatei (SVG-Datei, Basisgröße: 270 × 270 Pixel, Dateigröße: 32 KB)

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
English: Surface ionization effect in vaporized Cs atoms at 1500 kelvin, calculated using a grand canonical ensemble.
Y-axis: Average number of electrons on Cs atom. X-axis: negative of (electron chemical potential plus elementary charge times electrostatic potential), or in other words, work function of surface.
See article "Characterization of a cesium surface ionization source with a porous tungsten ionizer." for more information on the surface ionization effect.
Datum
Quelle Eigenes Werk
Urheber Nanite
SVG‑Erstellung
InfoField
 
Der SVG-Code ist valide.
 
Dieser Plot wurde mit Matplotlib erstellt.
Quelltext
InfoField

Python code

#Python source code. Requires [[:wikipedia:matplotlib|matplotlib]]. 
#Bonus features: 
1) Also makes entropy, energy, grand potential plots.
2) Also makes plots for Cl, and ionization of P, B impurities in silicon.

<syntaxhighlight lang="python">
"""
Plot various quantities related to thermal ionization of an atom,
calculated from simple model using grand canonical ensemble.
"""
from pylab import *
import matplotlib.transforms as transforms

plt.rc('text', usetex=True)
plt.rc('font', family='serif')
plt.rc('font', serif=['Computer Modern'])
figtype = '.svg'
saveopts = {} #'bbox_inches':'tight'} #, 'transparent':True, 'frameon':True}
axsize = [0.2,0.16,0.79,0.77]

### Thermodynamic functions ###
def Omega(x, x_I, x_A, g_0, g_I, g_A):
    """
    Grand potential in terms of dimensionless parameters.
        x = -(\mu+e\phi)/kT, where
            \mu is chemical potential
            \phi is electrostatic potential of vacuum
            e is elementary charge
        x_I = E_I/kT, where E_I is ionization energy of atom
        x_A = E_A/kT, where E_A is electron affinity of atom
        g_0, g_I, g_A: degeneracies of neutral, oxidized, reduced states.
    
    Returns grand potential with neutral offsets left off, in units
    of kT:
        (Omega + mu N_0 - E_0)/kT
    """
    return -log(g_0 + g_I*exp(x-x_I) + g_A*exp(x_A-x))

def navg(x, x_I, x_A, g_0, g_I, g_A):
    """
    Average occupation number in terms of dimensionless parameters.
    (see Omega for parameters' meaning)
    
    Returns <N> - N_0
    
    The occupation number is given by <N> = - d\Omega/d\mu
    """
    return (-g_I*exp(x-x_I) + g_A*exp(x_A-x))/(g_0 + g_I*exp(x-x_I) + g_A*exp(x_A-x))

def entropy(x, x_I, x_A, g_0, g_I, g_A):
    """
    Entropy/k in terms of dimensionless parameters.    
    (see Omega for parameters' meaning)
    
    This function is calculated from the grand potential \Omega of this system,
    and is given by
        S/k = - d\Omega/d(kT)
    """
    t1 = log(g_0 + g_I*exp(x-x_I) + g_A*exp(x_A-x))
    t2 = -(g_I*(x-x_I)*exp(x-x_I) + g_A*(x_A-x)*exp(x_A-x))/(g_0 + g_I*exp(x-x_I) + g_A*exp(x_A-x))
    return t1+t2

### Figure maker template ###
def makefigs(name, W, kT = 1.,
    N_0 = 1, E_I = 1., E_A = 1.,
    g_0 = 1, g_I = 1, g_A = 1,
    bandgap=None):

    def makefig():
        fig = figure()
        fig.set_size_inches(3,3)
        fig.patch.set_alpha(0)
        ax = axes(axsize)
        xlim(amin(W),amax(W))
        trans = ax.get_xaxis_transform()
        if amin(W) <= E_A <= amax(W):
            axvline(E_A, color='gray', linestyle='dotted')
            text(E_A,1.01,r'$\Delta E_{\rm A}$',ha='center',va='bottom',transform=trans)
        if amin(W) <= E_I <= amax(W):
            axvline(E_I, color='gray', linestyle='dotted')
            text(E_I,1.01,r'$\Delta E_{\rm I}$',ha='center',va='bottom',transform=trans)
        if bandgap is None:
            # free atom terminology
            xlabel(r'$W = [-\mu-e\phi]$~(eV)')
        else:
            # semiconductor terminology
            xlabel(r'$\epsilon_{\rm C}-\mu$~(eV)')
            axvline(bandgap, color='gray', linestyle='dashed')
            text(bandgap,1.01,r'$\Delta E_{\rm gap}$',ha='center',va='bottom',transform=trans)
        return fig,ax

    N = navg(W/kT,E_I/kT,E_A/kT,g_0,g_I,g_A)
    S = entropy(W/kT,E_I/kT,E_A/kT,g_0,g_I,g_A)
    Om = Omega(W/kT,E_I/kT,E_A/kT,g_0,g_I,g_A)
    aveE = (Om + S)*kT # This is <E>-E_0, for the case when \mu = 0

    fig,ax = makefig()
    plot(W, N_0 + N, linewidth=1.5)
    Nmin, Nmax = N_0 + amin(N) - 0.2, N_0 + amax(N) + 0.2
    ylim(Nmin, Nmax)
    axhline(N_0, color='green', linestyle='solid', linewidth=0.5)
    ax.yaxis.set_ticks([t for t in range(N_0+10) if Nmin <= t <= Nmax])
    ylabel(r'$\langle N \rangle = -\frac{d\Omega}{d\mu}$')
    savefig('ionize_'+name+'_navg'+figtype,**saveopts)

    fig,ax = makefig()
    ylabel(r'$S/k = -\frac{d\Omega}{d(kT)}$')
    plot(W, S, linewidth=1.5)
    ylim(-0.1,1.7)
    savefig('ionize_'+name+'_entropy'+figtype,**saveopts)

    fig,ax = makefig()
    plot(W, Om*kT, linewidth=1.5)
    ax.autoscale(False)
    plot(W, -E_A + W - kT*log(g_A), color='gray', linewidth=0.5)
    plot(W, W*0 - kT*log(g_0), color='green', linewidth=0.5)
    plot(W, E_I - W - kT*log(g_I), color='gray', linewidth=0.5)
    text(0.5,0.95,r'(for $\mu = 0$)',ha='center',va='top',transform=ax.transAxes)
    ax.yaxis.set_label_coords(-0.17,0.5)
    ylabel(r'$\Omega - E_0$ (eV)')
    savefig('ionize_'+name+'_grand'+figtype,**saveopts)

    fig,ax = makefig()
    plot(W, aveE, color='b', linewidth=1.5)
    ax.autoscale(False)
    plot(W, -E_A + W, color='gray', linewidth=0.5)
    plot(W, W*0, color='green', linewidth=0.5)
    plot(W, E_I - W, color='gray', linewidth=0.5)
    text(0.5,0.95,r'(for $\mu = 0$)',ha='center',va='top',transform=ax.transAxes)
    ylabel(r'$\langle E \rangle - E_0$~(eV)')
    ax.yaxis.set_label_coords(-0.17,0.5)
    savefig('ionize_'+name+'_energy'+figtype,**saveopts)

### Specific data ###
makefigs('Cs', # free Cesium
    linspace(-0.4,5.2,541),
    kT = 8.61733238e-5 * 1500, #eV, 1500 K
    N_0 = 55,
    E_I = 3.89390, #eV, from WP:Ionization_energies_of_the_elements_(data_page)
    E_A = 0.47164, #eV, from WP:Electron_affinity_(data_page)
    g_0 = 2, # unpaired 6s electron spin degeneracy
    g_I = 1, # filled shells
    g_A = 1, # filled shells
    )

makefigs('Cl', # free Chlorine
    linspace(-0.4,5.2,541),
    kT = 8.61733238e-5 * 1500, #eV, 1500 K
    N_0 = 17,
    E_I = 12.96764, #eV, from WP:Ionization_energies_of_the_elements_(data_page)
    E_A = 3.612724, #eV, from WP:Electron_affinity_(data_page)
    g_0 = 2, # unpaired 3p hole spin degeneracy
    g_I = 1, # irrelevant placeholder value (no visible effect)
    g_A = 1, # filled shells
    )

# Below we try some ionization of dopants in silicon.
# The real behaviour is a bit more complicated than indicated here but this gives
# the conventional textbook model of dopant ionization.
#   See "Theory of shallow acceptor states in Si and Ge" by Schechter (1962)
#  also "The electronic structure of impurities and other point defects in semiconductors" by Pantelides (1978).

makefigs('Si-P', # Phosphorus in silicon (dopant)
    linspace(-0.1,1.25,261),
    kT = 8.61733238e-5 * 295, #eV, 295 K
    N_0 = 15,
    E_I = 0.045, #eV, from web
    E_A = -10, #eV, random large value to prevent ionization
    g_0 = 2, # 3sp^5 electron spin degeneracy, S=1/2 in this case
    g_I = 1, # half-filled shell of 3sp electrons... apparently nonmagnetic
    g_A = 1, # irrelevant placeholder value (no visible effect)
    bandgap = 1.1,
    )

makefigs('Si-B', # Boron in silicon (dopant)
    linspace(-0.1,1.25,261),
    kT = 8.61733238e-5 * 295, #eV, 295 K
    N_0 = 5,
    E_I = 10, #eV, random large value to prevent ionization
    E_A = 1.1-0.045, #eV, from web
    g_0 = 4, # 3sp^3 hole spin degeneracy: two possible orbital states (from two valence bands), each with S=1/2
    g_I = 1, # irrelevant placeholder value (no visible effect)
    g_A = 1, # half-filled shell of 3sp electrons... apparently nonmagnetic
    bandgap = 1.1,
    )

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz CC0 1.0 Verzicht auf das Copyright zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell17:50, 20. Jan. 2014Vorschaubild der Version vom 17:50, 20. Jan. 2014270 × 270 (32 KB)Nanitetaking into account double degeneracy of neutral state
13:34, 20. Jan. 2014Vorschaubild der Version vom 13:34, 20. Jan. 2014270 × 270 (26 KB)NaniteChanged to 1500 K (was 295 K)
13:27, 20. Jan. 2014Vorschaubild der Version vom 13:27, 20. Jan. 2014270 × 270 (25 KB)NaniteUser created page with UploadWizard

Keine Seiten verwenden diese Datei.

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei:

Metadaten