Zum Inhalt springen

Datei:Prime number theorem ratio convergence.svg

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
Zur Beschreibungsseite auf Commons
aus Wikipedia, der freien Enzyklopädie

Originaldatei (SVG-Datei, Basisgröße: 250 × 160 Pixel, Dateigröße: 87 KB)

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
English: A plot showing how two estimates described by the prime number theorem, and converge asymptotically towards , the number of primes less than x. The x axis is and is logarithmic (labelled in evenly spaced powers of 10), going up to 1024, the largest for which is currently known. The former estimate converges extremely slowly, while the latter has visually converged on this plot by 108. Source used to generate this chart is shown below.
Datum
Quelle Eigenes Werk
Urheber Dcoetzee
SVG‑Erstellung
InfoField
 
Der SVG-Code ist valide.
 
Dieses Chart wurde mit Mathematica erstellt.
 
 Dieses Chart verwendet Text-Einbettung, die mit einem Texteditor leicht übersetzbar ist.

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz CC0 1.0 Verzicht auf das Copyright zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Source

All source released under CC0 waiver.

Mathematica source to generate graph (which was then saved as SVG from Mathematica):

(* Sample both functions at 600 logarithmically spaced points between \
1 and 2^40 *)
base = N[E^(24 Log[10]/600)];
ratios = Table[{Round[base^x], 
    N[PrimePi[Round[base^x]]/(base^x/(x*Log[base]))]}, {x, 1, 
    Floor[40/Log[2, base]]}];
ratiosli = 
  Table[{Round[base^x], 
    N[PrimePi[
       Round[base^x]]/(LogIntegral[base^x] - LogIntegral[2])]}, {x, 
    Ceiling[Log[base, 2]], Floor[40/Log[2, base]]}];
(* Supplement with larger known PrimePi values that are too large for \
Mathematica to compute *)
LargePiPrime = {{10^13, 346065536839}, {10^14, 3204941750802}, {10^15,
     29844570422669}, {10^16, 279238341033925}, {10^17, 
    2623557157654233}, {10^18, 24739954287740860}, {10^19, 
    234057667276344607}, {10^20, 2220819602560918840}, {10^21, 
    21127269486018731928}, {10^22, 201467286689315906290}, {10^23, 
    1925320391606803968923}, {10^24, 18435599767349200867866}};
ratios2 = 
  Join[ratios, 
   Map[{#[[1]], N[#[[2]]]/(#[[1]]/(Log[#[[1]]]))} &, LargePiPrime]];
ratiosli2 = 
  Join[ratiosli, 
   Map[{#[[1]], N[#[[2]]]/(LogIntegral[#[[1]]] - LogIntegral[2])} &, 
    LargePiPrime]];
(* Plot with log x axis, together with the horizontal line y=1 *)
Show[LogLinearPlot[1, {x, 1, 10^24}, PlotRange -> {0.8, 1.25}], 
 ListLogLinearPlot[{ratios2, ratiosli2}, Joined -> True], 
 LabelStyle -> FontSize -> 14]

LaTeX source for labels:

$$ \left.{\pi(x)}\middle/{\frac{x}{\ln x}}\right. $$
$$ \left.{\pi(x)}\middle/{\int_2^x \frac{1}{\ln t} \mathrm{d}t}\right. $$

These were converted to SVG with [1] and then the graph was embedded into the resulting document in Inkscape. Axis fonts were also converted to Liberation Serif in Inkscape.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell15:07, 21. Mär. 2013Vorschaubild der Version vom 15:07, 21. Mär. 2013250 × 160 (87 KB)DcoetzeeChange n to x to match article
14:30, 21. Mär. 2013Vorschaubild der Version vom 14:30, 21. Mär. 2013250 × 160 (86 KB)DcoetzeeConvert formula from graphics to pure SVG using http://www.tlhiv.org/ltxpreview/
14:23, 21. Mär. 2013Vorschaubild der Version vom 14:23, 21. Mär. 2013250 × 160 (130 KB)Dcoetzee{{Information |Description ={{en|1=A plot showing how two estimates described by the prime number theorem, <math>\frac{n}{\ln n}</math> and <math>\int_2^n \frac{1}{\ln t} \mathrm{d}t = Li(n) = li(n) - li(2)</math> converge asymptotically towards <ma...

Keine Seiten verwenden diese Datei.

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei:

Metadaten