Zum Inhalt springen

Datei:Prime number theorem absolute error.svg

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
Zur Beschreibungsseite auf Commons
aus Wikipedia, der freien Enzyklopädie

Originaldatei (SVG-Datei, Basisgröße: 283 × 178 Pixel, Dateigröße: 94 KB)

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
English: A log-log plot showing the absolute error of two estimates to the prime-counting function , given by and . The x axis is and is logarithmic (labelled in evenly spaced powers of 10), going up to 1024, the largest for which is currently known. The y axis is also logarithmic, going up to the absolute error of at 1024. The error of both functions appears to increase as a power of , with Li(x)'s power being smaller; both clearly diverge. The error of Li(x) appears to smooth out after 109 but this is an artifact due to less data availability for in the larger region. Source used to generate this chart is shown below.
Datum
Quelle Eigenes Werk
Urheber Dcoetzee
SVG‑Erstellung
InfoField
 
Der SVG-Code ist valide.
 
Dieses Diagramm wurde mit Mathematica erstellt.
 
und mit Inkscape.
 
 Dieses Diagramm verwendet Text-Einbettung, die mit einem Texteditor leicht übersetzbar ist.
Quelltext
InfoField

Mathematica code

base = N[][10]/600)];
diffs = Table[][base^x], 
    N[][][base^x] - (base^x/(x*Log[base]))]}, {x, 1, 
    Floor[][2, base]}];
diffsli = 
  Table[][base^x], 
    N[][][base^x] - (LogIntegral[base^x] - LogIntegral[2])]}, {x, 
    Ceiling[][base, 2], Floor[][2, base]}];
(* Supplement with larger known PrimePi values that are too large for \
Mathematica to compute *)
LargePiPrime = {{10^13, 346065536839}, {10^14, 3204941750802}, {10^15,
     29844570422669}, {10^16, 279238341033925}, {10^17, 
    2623557157654233}, {10^18, 24739954287740860}, {10^19, 
    234057667276344607}, {10^20, 2220819602560918840}, {10^21, 
    21127269486018731928}, {10^22, 201467286689315906290}, {10^23, 
    1925320391606803968923}, {10^24, 18435599767349200867866}};
diffs2 = Abs[][][][[1]], N[][[2]]] - (#[[1]]/(Log[][[1]]]))} &, 
     LargePiPrime]]];
diffsli2 = 
  Abs[][][][[1]], 
       N[][[2]]] - (LogIntegral[][[1]]] - LogIntegral[2])} &, 
     LargePiPrime]]];
(* Plot with log x axis, together with the horizontal line y=1 *)
Show[][1, {x, 1, 10^24}, PlotRange -> {1, 10^21}], 
 ListLogLogPlot[{diffs2, diffsli2}, Joined -> True, 
  PlotRange -> {1, 10^21}], LabelStyle -> FontSize -> 14]

LaTeX source for labels code

$$ {\pi(x)} - {\frac{x}{\ln x}} $$
$$ {\int_2^x \frac{1}{\ln t} \mathrm{d}t} - {\pi(x)} $$

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz CC0 1.0 Verzicht auf das Copyright zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Source

All source released under CC0 waiver.

Mathematica source to generate graph (which was then saved as SVG from Mathematica):


These were converted to SVG with [1] and then the graph was embedded into the resulting document in Inkscape. Axis fonts were also converted to Liberation Serif in Inkscape.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell16:47, 21. Mär. 2013Vorschaubild der Version vom 16:47, 21. Mär. 2013283 × 178 (94 KB)Dcoetzee== {{int:filedesc}} == {{Information |Description ={{en|1=A log-log plot showing the absolute error of two estimates to the prime-counting function <math>\pi(x)</math>, given by <math>\frac{x}{\ln x}</math> and <math>\int_2^x \frac{1}{\ln t} \mathrm...

Keine Seiten verwenden diese Datei.

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei:

Metadaten