Zum Inhalt springen

Datei:Newton optimization vs grad descent.svg

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
Zur Beschreibungsseite auf Commons
aus Wikipedia, der freien Enzyklopädie

Originaldatei (SVG-Datei, Basisgröße: 813 × 936 Pixel, Dateigröße: 48 KB)

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung
English: A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information to take a more direct route.
Polski: Porównanie metody najszybszego spadku(linia zielona) z metodą Newtona (linia czerwona). Na rysunku widać linie poszukiwań minimum dla zadanej funkcji celu. Metoda Newtona używa informacji o krzywiźnie w celu zoptymalizowania ścieżki poszukiwań.
Datum (UTC)
Quelle self-made with en:Matlab. Tweaked in en:Inkscape
Urheber Oleg Alexandrov
Public domain Ich, der Urheberrechtsinhaber dieses Werkes, veröffentliche es als gemeinfrei. Dies gilt weltweit.
In manchen Staaten könnte dies rechtlich nicht möglich sein. Sofern dies der Fall ist:
Ich gewähre jedem das bedingungslose Recht, dieses Werk für jedweden Zweck zu nutzen, es sei denn, Bedingungen sind gesetzlich erforderlich.

Source code

% Comparison of gradient descent and Newton's method for optimization
function main()

% the ploting window
   figure(1); clf; hold on; axis equal; axis off;

% colors
   red=[0.867 0.06 0.14];
   blue = [0, 129, 205]/256;
   green = [0, 200,  70]/256;
   black = [0, 0, 0];
   white = 0.99*[1, 1, 1];

% graphing settings
   lw=3; arrowsize=0.06; arrow_type=2;
   fs=13;

% the function whose contours will be plotted, and its partials
   C = [0.2, 4, 0.4, 1, 1.5]; % Tweak f by tweaking C
   f=inline('(C(1)*(x-0.4).^4+C(2)*x.^2+C(3)*(y+1).^4+C(4)*y.^2+C(5)*x.*y-1)', 'x', 'y', 'C');
   fx=inline('(4*C(1)*(x-0.4).^3+2*C(2)*x+C(5)*y)', 'x', 'y', 'C');
   fy=inline('(4*C(3)*(y+1).^3+2*C(4)*y+C(5)*x)', 'x', 'y', 'C');

   fxx=inline('(12*C(1)*(x-0.4).^2+2*C(2))', 'x', 'y', 'C');
   fxy=inline('C(5)', 'x', 'y', 'C');
   fyy=inline('(12*C(3)*(y+1).^2+2*C(4))', 'x', 'y', 'C');

   plot_contours(f, C, blue, white, lw);

% step size
   alpha=0.025;
   
% initial guess
   V0=[-0.2182,  -1.2585];
   x=V0(1); y = V0(2);
   z=x; w=y;

   % run several iterations of gradient descent and Newton's method
   X=[x]; Y=[y]; Z = [z]; W=[w];
   for i=0:200

      % grad descent
      u=fx(x, y, C);
      v=fy(x, y, C);

      x=x-alpha*u; y=y-alpha*v;
	  X = [X, x]; Y = [Y, y];
	  
      % newton's method
      u=fx(z, w, C);
      v=fy(z, w, C);
      mxx=fxx(z, w, C);
      mxy=fxy(z, w, C);
      myy=fyy(z, w, C);
      M = [mxx, mxy; mxy, myy];

      V = M\[u; v];
      u = V(1);
      v = V(2);

      z=z-alpha*u; w=w-alpha*v;
	  Z = [Z, z]; W = [W, w];

   end

   plot(X, Y, 'color', green, 'linewidth', lw);
   plot(Z, W, 'color', red,   'linewidth', lw);


% plot text
   small = 0.03;
   m = length(Z); V = [Z(m), W(m)];
   text(V0(1)-2*small, V0(2)-2*small, 'x_0', 'fontsize', fs);
   text(V(1)+small, V(2)+small, 'x', 'fontsize', fs);

% some small balls, to hide some imperfections
   small_rad= 0.015;
   ball(V0(1),V0(2), small_rad, blue);
   ball(V(1),V(2),   small_rad, blue);
   
% save to eps ans svg
   saveas(gcf, 'Newton_optimization_vs_grad_descent.eps', 'psc2')
%   plot2svg('Newton_optimization_vs_grad_descent.svg')

function plot_contours(f, C, color, color2, lw)
   
   % Calculate f on a grid
   Lx1=-2; Lx2=2; Ly1=-2; Ly2=2;
   N=60; h=1/N;
   XX=Lx1:h:Lx2;
   YY=Ly1:h:Ly2;
   [X, Y]=meshgrid(XX, YY);
   Z=f(X, Y, C);

% the contours
   h=0.3; l0=-1; l1=0.7;
   l0=h*floor(l0/h);
   l1=h*floor(l1/h);
   Levels=-[l0:1.5*h:0 0:h:l1 0.78];


% Plot the contours with 'contour' in figure(2), and then with 'plot' in figure(1).
% This is to avoid a bug in plot2svg, it can't save output of 'contour'.
   figure(2); clf; hold on; axis equal; axis off;
   xmin = 1000; ymin = xmin; xmax = -xmin; ymax = -ymin;
   for i=1:length(Levels)

      figure(2);
      [c, stuff] = contour(X, Y, Z, [Levels(i), Levels(i)]);

      [m, n]=size(c);
      if m > 1 & n > 0
		 
      % extract the contour from the contour matrix and plot in figure(1)
		 l=c(2, 1);
		 x=c(1,2:(l+1));  y=c(2,2:(l+1)); 
		 figure(1); plot(x, y, 'color', color, 'linewidth', 0.66*lw);

		 xmin = min(xmin, min(x)); xmax = max(xmax, max(x));
		 ymin = min(ymin, min(y)); ymax = max(ymax, max(y));
      end
   end
   figure(1);

% some dummy text, to expand the saving window a bit
   small = 0.04;
   plot(xmin-small, ymin-small, '*', 'color', color2);
   plot(xmax+small, ymax+small, '*', 'color', color2);

   
function arrow(start, stop, thickness, arrow_size, sharpness, arrow_type, color)

% Function arguments:
% start, stop:  start and end coordinates of arrow, vectors of size 2
% thickness:    thickness of arrow stick
% arrow_size:   the size of the two sides of the angle in this picture ->
% sharpness:    angle between the arrow stick and arrow side, in radians
% arrow_type:   1 for filled arrow, otherwise the arrow will be just two segments
% color:        arrow color, a vector of length three with values in [0, 1]

% convert to complex numbers
   i=sqrt(-1);
   start=start(1)+i*start(2); stop=stop(1)+i*stop(2);
   rotate_angle=exp(i*sharpness);

% points making up the arrow tip (besides the "stop" point)
   point1 = stop - (arrow_size*rotate_angle)*(stop-start)/abs(stop-start);
   point2 = stop - (arrow_size/rotate_angle)*(stop-start)/abs(stop-start);

   if arrow_type==1 % filled arrow

% plot the stick, but not till the end, looks bad
      t=0.5*arrow_size*cos(sharpness)/abs(stop-start); stop1=t*start+(1-t)*stop;
      plot(real([start, stop1]), imag([start, stop1]), 'LineWidth', thickness, 'Color', color);

% fill the arrow
      H=fill(real([stop, point1, point2]), imag([stop, point1, point2]), color);
      set(H, 'EdgeColor', 'none')

   else % two-segment arrow
      plot(real([start, stop]), imag([start, stop]),   'LineWidth', thickness, 'Color', color);
      plot(real([stop, point1]), imag([stop, point1]), 'LineWidth', thickness, 'Color', color);
      plot(real([stop, point2]), imag([stop, point2]), 'LineWidth', thickness, 'Color', color);
   end

function ball(x, y, r, color)
   Theta=0:0.1:2*pi;
   X=r*cos(Theta)+x;
   Y=r*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', 'none');

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell06:58, 23. Jun. 2007Vorschaubild der Version vom 06:58, 23. Jun. 2007813 × 936 (48 KB)Oleg Alexandrov{{Information |Description= |Source=self-made with en:Matlab. Tweaked in en:Inkscape |Date= ~~~~~ |Author= Oleg Alexandrov }} {{PD-self}}

Keine Seiten verwenden diese Datei.

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei: