Zum Inhalt springen

Datei:Nested Ellipses.svg

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
Zur Beschreibungsseite auf Commons
aus Wikipedia, der freien Enzyklopädie

Originaldatei (SVG-Datei, Basisgröße: 1.500 × 1.000 Pixel, Dateigröße: 2 KB)

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
English: Nested Ellipses , Parameters: a=5, b=4 theta=0.2617993877991494 r=0.9434598957108945 number of ellipses=61.
"The spiral itself is not drawn: we see it as the locus of points where the circles are especially close to each other." [1]
Datum
Quelle Eigenes Werk
Urheber Adam majewski
Andere Versionen
SVG‑Erstellung
InfoField
 
Der SVG-Code ist valide.
 
Dieses Diagramm wurde mit einem Texteditor erstellt. Die Validierung hat sie für syntaktisch korrekt befunden.
Previous version had been created with Gnuplot (15 566 434 bytes)  d  now 0.01% of previous size
 
Please do not replace the simplified code of this file with a version created with Inkscape or any other vector graphics editor

Algorithm

Ellipse centered at origin and not rotated

NOtation

the equation of a ellipse:

  • centered at the origin
  • with width = 2a and height = 2b

the parametric equation is:

So explicit equations :

The parameter t :

  • is called the eccentric anomaly in astronomy
  • is not the angle of with the x-axis
  • can be called internal angle of the ellipse

ellipse rotated and not moved

Rotation In two dimensions

A counterclockwise rotation of a vector through angle Template:Mvar. The vector is initially aligned with the Template:Mvar-axis.

In two dimensions, the standard rotation matrix has the following form:

.

This rotates column vectors by means of the following matrix multiplication,

.

Thus, the new coordinates (x′, y′) of a point (x, y) after rotation are

.

result

Center is in the origin ( not shifted or not moved) and rotated:

  • center is the origin z = (0, 0)
  • is the angle measured from x axis
  • The parameter t (called the eccentric anomaly in astronomy) is not the angle of with the x-axis
  • a,b are the semi-axis in the x and y directions




Here

  • is fixed ( constant value)
  • t is a parameter = independent variable used to parametrise the ellipse


So

intersection of 2 ellipses

Intersection = common points

not scaled

2 ellipses:

  • both are cetered at origin
  • first is not rotated, second is rotated (constant angle theta)
  • with the same the aspect ratio s (the ratio of the major axis to the minor axis)




Fix x, then find y:

scaled

Second is scaled by factor r[5]



where:

  • is the tilt angle


Python source code

import math, io
def make_svg(x_offset, y_offset):
 outs  = []
 n     = 61
 a     = 6035
 b     = 4828
 theta = 15
 delta = (1.0 * a / b - 1.0 * b / a) * math.sin(math.radians(theta))
 r     = (1 + delta * delta / 4) ** 0.5 - delta / 2
 # print(delta, r)
 for i in range(n):
  a_i = a * r ** i
  b_i = b * r ** i
  deg = (-theta * i) % 180
  rad = math.radians(deg)
  t   = math.pi * 1.5 if deg == 0 else math.pi + math.atan(b_i * math.cos(rad) / (a_i * math.sin(rad)))
  x   = a_i * math.cos(rad) * math.cos(t) - b_i * math.sin(rad) * math.sin(t) + x_offset - 65
  y   = a_i * math.sin(rad) * math.cos(t) + b_i * math.cos(rad) * math.sin(t) + y_offset + 8
  ## formulae from http://math.stackexchange.com/questions/1889450/extrema-of-ellipse-from-parametric-form
  # print(i, deg, t)
  outs.append('M%.0f%s%.0fa%.0f,%.0f %.0f 1 0 1,0' % (x, '' if y < 0 else ',', y, a_i, b_i, deg))
 return '''<?xml version="1.0"?>
<svg xmlns="http://www.w3.org/2000/svg" width="1500" height="1000" viewBox="%d %d 15000 10000">
<path d="%s" fill="none" stroke="#f00" stroke-width="9"/>
</svg>''' % (x_offset - 7500, y_offset - 5000, ''.join(outs))
# <path d="%s" fill="none" stroke="#f00" stroke-width="9" marker-mid="url(#m)"/>
# <marker id="m"><circle r="9"/></marker>

## Find shortest output and write to file
(x_offset_min, length_min) = (0, 99999)
for x_offset in range(-9999, 9999, 1):
 length = len(make_svg(x_offset, 0))
 if length_min > length: (x_offset_min, length_min) = (x_offset, length)
 # print(x_offset, length)
print(x_offset_min, length_min)
(y_offset_min, length_min) = (0, 99999)
for y_offset in range(-9999, 9999, 1):
 length = len(make_svg(0, y_offset))
 if length_min > length: (y_offset_min, length_min) = (y_offset, length)
 # print(y_offset, length)
print(y_offset_min, length_min)
with io.open(__file__[:__file__.rfind('.')] + '.svg', 'w', newline='\n') as f: ## *.* -> *.svg
 f.write(make_svg(x_offset_min, y_offset_min))

Maxima CAS src code

/*

kissing ellipses



These animations are constructed by shrinking and rotating a sequence of concentric and similar ellipses,
so that each ellipse lies inside the previous ellipse and is tangent to it.

https://benice-equation.blogspot.com/2019/01/nested-ellipses.html

==================================================
https://math.stackexchange.com/questions/3773593/given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips

tangential concentric ellipse and insribed ellipses

Let’s say I have an ellipse with horizontal axis $a$ and vertical axis $b$, centered at $(0,0)$. 
I want to compute $a’$ and $b’$ of a smaller ellipse centered at $(0,0)$, 
with the axes rotated by some angle $t$, tangent to the bigger ellipse and $\frac{a’}{b’}=\frac{a}{b}$.




---------------------

The standard parametric equation is:

(x,y)->(a cos(t),b sin(t))


---------------------------

Rotation counterclockwise about the origin through an angle α carries 

(x, y) to (x cos α − ysin α, ycos α+x sin α) 

https://www.maa.org/external_archive/joma/Volume8/Kalman/General.html

=====================================
https://math.stackexchange.com/questions/2987044/how-to-find-the-equation-of-a-rotated-ellipse

===============================
https://math.stackexchange.com/questions/3773593/given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips

============================================================
intersection of 2 ellipses

the common point of 2 ellipses are not vertices ( vertex)

https://math.stackexchange.com/questions/1688449/intersection-of-two-ellipses
https://math.stackexchange.com/questions/425366/finding-intersection-of-an-ellipse-with-another-ellipse-when-both-are-rotated/425412#425412

https://math.stackexchange.com/questions/3312747/intersection-area-of-concentric-ellipses
https://math.stackexchange.com/questions/426150/what-is-the-general-equation-of-the-ellipse-that-is-not-in-the-origin-and-rotate/434482#434482
------
xc <- 1 # center x_c or h
yc <- 2 # y_c or k
a <- 5 # major axis length
b <- 2 # minor axis length
phi <- pi/3 # angle of major axis with x axis phi or tau

t <- seq(0, 2*pi, 0.01) 
x <- xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi)
y <- yc + a*cos(t)*cos(phi) + b*sin(t)*cos(phi)
plot(x,y,pch=19, col='blue')
https://stackoverflow.com/questions/41820683/how-to-plot-ellipse-given-a-general-equation-in-r

===============
Batch file for Maxima CAS
save as a e.mac
run maxima : 
 maxima
and then : 
batch("e.mac");




*/


kill(all);
remvalue(all);
ratprint:false;
numer:true$
display2d:false$


/* 
converts complex number z = x*y*%i 
to the list in a draw format:  
[x,y] 
*/
d(z):=[float(realpart(z)), float(imagpart(z))]$

/* give Draw List from one point*/
dl(z):=points([d(z)])$




/* trigonometric functions in Maxima CAS use radians */
deg2rad(t):= float(t*2*%pi/360)$

GiveImplicit(a,b):=implicit( x^2/(a^2) + (y^2)/(b^2) = 1, x, -4,4, y, -4,4)$

GivePointOfEllipse(a,b, t):= a*cos(t) + b*sin(t)*%i$


/*

xc <- 1 # center x_c or h
yc <- 2 # y_c or k
a <- 5 # major axis length
b <- 2 # minor axis length
phi <- pi/3 # angle of major axis with x axis phi or tau

t <- seq(0, 2*pi, 0.01) 
x <- xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi)
y <- yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi)

<math>\mathbf{x} =\mathbf{x}_{\theta}(t) = a\cos\ t\cos\theta - b\sin\ t\sin\theta</math>

<math>\mathbf{y} =\mathbf{y}_{\theta}(t) = a\cos\ t\cos\theta + b\sin\ t\cos\theta</math>


https://stackoverflow.com/questions/65278354/how-to-draw-rotated-ellipse-in-maxima-cas/65294520#65294520
*/

GiveRotatedEllipse(a,b,theta, NumberOfPoints):=block(
	[x, y, zz, t , tmin, tmax, dt, c, s],
	zz:[],
	dt : 1/NumberOfPoints, 
 	tmin: 0, 
 	tmax: 2*%pi,
 	c:float(cos(theta)),
 	s:float(sin(theta)),
 	for t:tmin thru tmax step dt do(
 		x: a*cos(t)*c - b*sin(t)*s,
 		x: float(x), 
 		y: a*cos(t)*s + b*sin(t)*c,
 		y:float(y),
 		zz: cons([x,y],zz)
 	),
 	return (points(zz))
)$

GiveScaledRotatedEllipse(a,b, r,theta, NumberOfPoints):= GiveRotatedEllipse(r*a,r*b,theta, NumberOfPoints)$

GiveEllipseN(a,b,r,n,theta, NumberOfPoints):=GiveRotatedEllipse(a*(r^n),b*(r^n),n*theta, NumberOfPoints)$

Give_N(n):= GiveEllipseN(a,b,r,n,theta, NumberOfPoints)$

GiveEllipses(n):=block(
	[elipses],
	
	ellipses:makelist(i, i, 0, n, 1),
	ellipses:map(Give_N, ellipses),
	return(ellipses)
	


)$

/* 
scale ratio r = a'/a = b'/b

https://math.stackexchange.com/questions/3773593/given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips
*/
GiveScaleRatio(a, b, theta):= block(
	[d, r], 
	d: (a/b - b/a)*sin(theta), 
	d:float(d),
	r: sqrt(1+d*d/4) - d/2,
	r:float(r),
	return(r)


)$


compile(all)$

/* compute */

/* angles fo trigonometric functions in radians */
angle: 15$
theta:deg2rad(angle) $  /* theta is the angle between    */
a: 5$
b: 4$
NumberOfPoints : 500$
r:GiveScaleRatio(a, b, theta)$  /* 0.942$ the (axis) scaled ratio r = a'/a = b'/b */


n:70;



ee:GiveEllipses(n)$



path:"~/Dokumenty/ellipse/scaled/s1/"$ /*  pwd, if empty then file is in a home dir , path should end with "/" */

/* draw it using draw package by */

 load(draw); 
/* if graphic  file is empty (= 0 bytes) then run draw2d command again */

 draw2d(
  user_preamble="set key top right; unset mouse",
  terminal  = 'svg,
  file_name = sconcat(path, string(a),"_",string(b), "_",string(theta), "_",string(r),"_", string(n)),
   title = "",  
  dimensions = [1500, 1000],
   axis_top         = false,
  axis_right       = false,
  axis_bottom         = false,
  axis_left       = false,
 ytics  = 'none,
 xtics  = 'none,
  proportional_axes = xy,
  line_width = 1,
  line_type = solid,
  
  fill_color = white,
  point_type=filled_circle,
  points_joined = true,
  point_size = 0.05,
  
    
  key = "",
  color = red,
  ee 
  )$
  

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
w:de:Creative Commons
Namensnennung Weitergabe unter gleichen Bedingungen
Dieses Werk darf von dir
  • verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
  • neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
  • Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
  • Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.

Postprocessing

File size was reduced -29% with https://svgoptimizer.com/

references

  1. Osculating curves: around the Tait-Kneser Theoremby E. Ghys, S. Tabachnikov, V. Timorin
  2. Nested Ellipses (Ellipse Whirl) by benice (C. J. Chen)
  3. math.stackexchange question: given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips
  4. texample : rotated-polygons
  5. math.stackexchange question : given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.
Nested Ellipses

In dieser Datei abgebildete Objekte

Motiv

image/svg+xml

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell18:26, 24. Feb. 2023Vorschaubild der Version vom 18:26, 24. Feb. 20231.500 × 1.000 (2 KB)CmgleeMinimise by using <path> and searching for offsets minimising file size
14:08, 24. Feb. 2023Vorschaubild der Version vom 14:08, 24. Feb. 20231.500 × 1.000 (7 KB)CmgleeUse actual SVG ellipses
20:51, 23. Feb. 2023Vorschaubild der Version vom 20:51, 23. Feb. 20231.500 × 1.000 (22 KB)Mrmwlower filesize
19:15, 15. Dez. 2020Vorschaubild der Version vom 19:15, 15. Dez. 20201.500 × 1.000 (14,85 MB)Soul windsurferUploaded own work with UploadWizard

Keine Seiten verwenden diese Datei.

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei:

Metadaten