Cremona group
In birational geometry, the Cremona group, named after Luigi Cremona, is the group of birational automorphisms of the -dimensional projective space over a field , also known as Cremona transformations. It is denoted by , or .
Historical origins
[edit]The Cremona group was introduced by the italian mathematician Luigi Cremona (1863, 1865).[1] However, some historians consider Isaac Newton as a "founder of the theory of Cremona transformations" through his work done two centuries before, in 1667 and 1687.[2][3] Contributions were also made by Hilda Phoebe Hudson in the 1900s.[4]
Basic properties
[edit]The Cremona group is naturally identified with the automorphism group of the field of the rational functions in indeterminates over . Here, the field is a pure transcendental extension of , with transcendence degree .
The projective general linear group is contained in . The two are equal only when or , in which case both the numerator and the denominator of a transformation must be linear.[5]
A longlasting question from Federigo Enriques concerns the simplicity of the Cremona group. It has been now mostly answered.[6]
The Cremona group in 2 dimensions
[edit]In two dimensions, Max Noether and Guido Castelnuovo showed that the complex Cremona group is generated by the standard quadratic transformation, along with , though there was some controversy about whether their proofs were correct. Gizatullin (1983) gave a complete set of relations for these generators. The structure of this group is still not well understood, though there has been a lot of work on finding elements or subgroups of it.
- Cantat & Lamy (2010) showed that for an algebraicly closed field , the group is not simple.
- Blanc (2010) showed that it topologically simple for the Zariski topology.[a]
- For the finite subgroups of the Cremona group see Dolgachev & Iskovskikh (2009).
- Zimmermann (2018) computed the abelianization of . From this, she deduces that there is no analogue of Noether–Castelnuovo theorem in this context.[6]
The Cremona group in higher dimensions
[edit]There is little known about the structure of the Cremona group in three dimensions and higher though many elements of it have been described.
There is no easy analogue of the Noether–Castelnouvo theorem, as Hudson (1927) showed that the Cremona group in dimension at least 3 is not generated by its elements of degree bounded by any fixed integer.
Blanc (2010) showed that it is (linearly) connected, answering a question of Serre (2010). Later, Blanc & Zimmermann (2018) showed that for any infinite field , the group is topologically simple[a] for the Zariski topology, and even for the euclidean topology when is a local field.
Blanc, Lamy & Zimmermann (2021) proved that when is a subfield of the complex numbers and , then is a simple group.
De Jonquières groups
[edit]A De Jonquières group is a subgroup of a Cremona group of the following form.[7] Pick a transcendence basis for a field extension of . Then a De Jonquières group is the subgroup of automorphisms of mapping the subfield into itself for some . It has a normal subgroup given by the Cremona group of automorphisms of over the field , and the quotient group is the Cremona group of over the field . It can also be regarded as the group of birational automorphisms of the fiber bundle .
When and the De Jonquières group is the group of Cremona transformations fixing a pencil of lines through a given point, and is the semidirect product of and .
See also
[edit]References
[edit]- ^ Trkovská, D. (2008). "Luigi Cremona and his Transformations". WDS'08 Proceedings of Contributed Papers. MatfyzPress: 32–37.
- ^ Shkolenok, Galina A. (1972). "Geometrical Constructions Equivalent to Non-Linear Algebraic Transformations of the Plane in Newton's Early Papers". Archive for History of Exact Sciences. 9 (1): 22–44. ISSN 0003-9519.
- ^ Bloye, Nicole; Huggett, Stephen (2011). "Newton, the geometer" (PDF). Newsletter of the European Mathematical Society (82): 19–27. MR 2896438. Archived from the original (PDF) on 8 March 2023. Retrieved 19 February 2023.
- ^ "Hilda Hudson - Biography". Maths History. Retrieved 2025-04-19.
- ^ "Cremona group - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2025-05-30.
- ^ a b "A propos des travaux de Susanna Zimmermann, médaille de bronze du CNRS 2020 | CNRS Mathématiques". www.insmi.cnrs.fr (in French). 2020-11-30. Retrieved 2025-05-30.
- ^ Popov, Vladimir L. (2012-07-16), Some subgroups of the Cremona groups, arXiv, doi:10.48550/arXiv.1110.2410, arXiv:1110.2410, retrieved 2025-05-30
Notes
[edit]Bibliography
[edit]- Alberich-Carramiñana, Maria (2002), Geometry of the plane Cremona maps, Lecture Notes in Mathematics, vol. 1769, Berlin, New York: Springer-Verlag, doi:10.1007/b82933, ISBN 978-3-540-42816-9, MR 1874328
- Blanc, Jérémy (2010), "Groupes de Cremona, connexité et simplicité", Annales Scientifiques de l'École Normale Supérieure, Série 4, 43 (2): 357–364, arXiv:0903.2489, doi:10.24033/asens.2123, ISSN 0012-9593, MR 2662668
- Blanc, Jérémy; Zimmermann, Susanna (2018). "Topological simplicity of the Cremona groups". American Journal of Mathematics. 140 (5): 1297–1309. doi:10.1353/ajm.2018.0032. ISSN 1080-6377.
- Blanc, Jérémy; Lamy, Stéphane; Zimmermann, Susanna (2021). "Quotients of higher-dimensional Cremona groups". Acta Mathematica. 226 (2): 211–318. doi:10.4310/acta.2021.v226.n2.a1. ISSN 0001-5962.
- Cantat, Serge; Lamy, Stéphane (2010). "Normal subgroups in the Cremona group". Acta Mathematica. 210 (2013): 31–94. arXiv:1007.0895. Bibcode:2010arXiv1007.0895C. doi:10.1007/s11511-013-0090-1. S2CID 55261367.
- Cantat, Serge (2018), "The Cremona group", Algebraic Geometry: Salt Lake City 2015, Proceedings of Symposia in Pure Mathematics, vol. 97, part 1, American Mathematical Society, pp. 101–142, retrieved 2025-05-30
- Coolidge, Julian Lowell (1931), A treatise on algebraic plane curves, Oxford University Press, ISBN 978-0-486-49576-7, MR 0120551
{{citation}}
: ISBN / Date incompatibility (help) - Cremona, L. (1863), "Sulle trasformazioni geometriche delle figure piane (nota 1)", Giornale di Matematiche di Battaglini, 1: 305–311
- Cremona, L. (1865), "Sulle trasformazioni geometriche delle figure piane (nota 2)", Giornale di Matematiche di Battaglini, 3: 269–280, 363–376
- Demazure, Michel (1970), "Sous-groupes algébriques de rang maximum du groupe de Cremona", Annales Scientifiques de l'École Normale Supérieure, Série 4, 3 (4): 507–588, doi:10.24033/asens.1201, ISSN 0012-9593, MR 0284446
- Dolgachev, Igor V. (2012), Classical Algebraic Geometry: a modern view (PDF), Cambridge University Press, ISBN 978-1-107-01765-8, archived from the original (PDF) on 2012-03-11, retrieved 2012-04-18
- Dolgachev, Igor V.; Iskovskikh, Vasily A. (2009), "Finite subgroups of the plane Cremona group", Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math., vol. 269, Boston, MA: Birkhäuser Boston, pp. 443–548, arXiv:math/0610595, doi:10.1007/978-0-8176-4745-2_11, ISBN 978-0-8176-4744-5, MR 2641179, S2CID 2188718
- Gizatullin, M. Kh. (1983), "Defining relations for the Cremona group of the plane", Mathematics of the USSR-Izvestiya, 21 (2): 211–268, Bibcode:1983IzMat..21..211G, doi:10.1070/IM1983v021n02ABEH001789, ISSN 0373-2436, MR 0675525
- Godeaux, Lucien (1927), Les transformations birationelles du plan, Mémorial des sciences mathématiques, vol. 22, Gauthier-Villars et Cie, JFM 53.0595.02
- "Cremona group", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- "Cremona transformation", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Hudson, Hilda Phoebe (1927), Cremona transformations in plane and space, Cambridge University Press, ISBN 978-0-521-35882-8, Reprinted 2012
{{citation}}
: ISBN / Date incompatibility (help) - Semple, J. G.; Roth, L. (1985), Introduction to algebraic geometry, Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN 978-0-19-853363-4, MR 0814690
- Serre, Jean-Pierre (2009), "A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field", Moscow Mathematical Journal, 9 (1): 193–208, doi:10.17323/1609-4514-2009-9-1-183-198, ISSN 1609-3321, MR 2567402, S2CID 13589478
- Serre, Jean-Pierre (2010), "Le groupe de Cremona et ses sous-groupes finis" (PDF), Astérisque, Seminaire Bourbaki 1000 (332): 75–100, ISBN 978-2-85629-291-4, ISSN 0303-1179, MR 2648675
- Zimmermann, Susanna (2018-02-01). "The Abelianization of the real Cremona group". Duke Mathematical Journal. 167 (2). doi:10.1215/00127094-2017-0028. ISSN 0012-7094.