Zum Inhalt springen

Diskussion:Fourier-Analysis

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 5. Oktober 2005 um 21:11 Uhr durch 80.143.230.106 (Diskussion) (Basisfunktionen). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Auslagerung: Dirichlet-Bedingungen

Bitte eine Quelle dazu angeben, diese Bedingungen sind eine Einschränkung der notwendigen Bedingung, keine Erweiterung oder gar "hinreichend".

Diese Bedingung ist notwendig, aber nicht hinreichend.
Zur sicheren Konvergenz müssen die Dirichlet'schen Bedingungen erfüllt sein: 
- f(t) muß betragsmäßig integrierbar sein
- f(t) darf nur eine endliche Anzahl von Minima und Maxima auf jedem endlichen Intervall haben
- f(t) darf nur endlich viele Unstetigkeiten auf jedem endlichen Intervall haben.

--LutzL 13:45, 4. Okt 2005 (CEST)

Nun: Vorlesung! wird hier wohl nicht ausreichen oder? Argumentieren wir mal:

  1. Die Fouriertrafo entsteht durch eine Grenzwertbildung aus der komplexen Fourierreihe (die Periode der Zeitfunktion geht gegen unendlich)
  2. Für die komplexe Fourierreihe gelten die selben Konvergenzkriterien wie für die "normale" Fourierreihe (vgl. Bronstein - Taschenbuch der Mathematik, Auflage 5, Seite 437 "3. Dirichlet'sche Bedingungen" sowie "Komplexe Darstellung der F-Reihe", selbe Seite)
  3. Durch die Grenzwertbildung werden nichtkonvergente Trafos nicht konvergent und konvergente nicht divergent!

Die von mir aufgeführten Bedingungen sind lediglich andere Darstellungen der unter der angegebenen Quelle angegebenen Bedingungen sind aber äquivalent.

Wers nicht glaubt: http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/geissler/tf/Kap4.4.pdf Seite 4 ab Zeile 23

Ich möchte hiermit dann um Übernahme bitten. Mir solls ja egal sein! Hab auch noch was unter Basisfunktionen ergänzt!

Bitte Signatur/Account zulegen und mit vier mal Tilde signieren. Insbesondere erscheint dann ein Datum, was zum Nachvollziehen der Diskussion wichtig ist.
Das Skript vom Herrn Geissler ist, mathematisch gesehen, Schrott. Schon von den Begriffen her: Die Existenz des Fourier-Integrals ist etwas anderes als die Darstellbarkeit mittels Fourier-Trafo. Für die Existenz des Fourier-Integrals reicht in der Tat die Messbarkeit, schwächer die stückweise monotone Stetigkeit, und die absolute Integrierbarkeit (die Integration setzt die Messbarkeit voraus) aus. Für die Darstellbarkeit ist aber die Existenz der inversen Fourier-Transformation notwendig, d.h. dass die Fourier-Transformierte ebenfalls jene Dirichlet-Bedingungen erfüllt. Das ist nicht immer gegeben. Und dann kommt aus heiterem Himmel der Dirac-Stoß, womöglich noch als "Zeit"-Funktion. Und das im 21. Jahrhundert;-).
Zu Deinen Punkten: 1.) ist schlichtweg falsch. Wie soll denn der Grenzprozess aussehen? Konvergenz in welchem Sinne? 2.) ist mathematisch gesehen trivial, und für die punktweise Konvergenz der Fourier-Reihenentwicklung braucht es in der Tat die Dirichlet-Bedingungen, sogar noch etwas schärfer: Die Funktion muss stückweise stetig differenzierbar sein. 3.) ist allgemein falsch. Das Vertauschen von Grenzwerten ist eine äußerst heikle Sache, es sei an den Satz von Fubini oder das Cauchy-Produkt von Zahlenreihen erinnert.--LutzL 09:12, 5. Okt 2005 (CEST)

Dann sollte ich das jetzt mal n paar Profs zeigen ;-) 80.143.230.106 21:08, 5. Okt 2005 (CEST)

Bitte vereinfachte Erklärung hinzufügen

Ich wünsche mir zu diesem Artikel eine einfache Erklärung sowie ein paar einfache Anwendungsbeispiele der Fouriertransformation, die auch für solche Leute verständlich sind, die nicht (mehr) täglich mit Gleichungen arbeiten.

--GeorgScholz 08:47, 21. Jul 2005 (CEST)

Basisfunktionen

Das folgende ist grob falsch:

(Zitat Beginn)

Die Fourier-Transformation ist eine Integraltransformation, die eine Funktion in Sinus- und Kosinus-Bestandteile (Basisfunktionen) zerlegt, das heißt in eine Summe von Sinus- oder Kosinusfunktionen verschiedener Frequenz, Phase und Amplitude.

(Zitat Ende)

Basisfunktionen der Fouriertransformation sind Exponentialschwingungen:

. Diese werden nicht summiert, sondern integriert:

Sinus- und Kosinusschwingungen gehören zur reellen Fourierreihe.

Akropolit 17:07, 22. Nov 2004 (CET)

Wenn Du so einen Bock findest, dann verbessere das doch bitte direkt. Viele Gruesse --DaTroll 17:09, 22. Nov 2004 (CET)

Nunja. Durch die Trafo wird eine funktion in die komplexe Ebene übertragen. Für jede Frequenz läßt sich hier ein komplexer Fuktionswert finden. Komplexe Zahlen können sowohl in der Polar- als auch in der "Normal"Darstellung angegeben werden...

=> daraus folgt, daß auch bei der Fouriertransformation das Signal als eine Summe vonn unendlich vielen Kosinus- und Sinusschwingungen angesehen werden kann.

Was bitte wolltest Du sagen? Dass Du nicht weißt, was Integration bedeutet? Durch die Fourier-Transformation wird, wie es in der Einleitung steht, jeder Funktion, die bestimmte Bedingungen erfüllt, eine weitere, komplexwertige Funktion zugeordnet, kein diffuses Etwas in der Gaußschen Zahlenebene. Eine Summe von unendlich etwas ist eine Reihe, eine Reihe mit Sinus- und Kosinus-Funktionen ist periodisch oder quasi-periodisch und somit nicht absolut integrabel. Außerdem kann man schon mit Fourier-Reihen Funktionen bauen, die den sog. Dirichlet-Bedingungen widersprechen. Deshalb hat der Herr Cantor ja überhaupt mit Mengenlehre und modernem Funktionenbegriff angefangen.--LutzL 09:26, 5. Okt 2005 (CEST)
Ähhh ja. Hmmm, was habe ich da nur gedacht? Ich hab da wohl was anderes geschrieben als gedacht... Sorry, das mit der Integration weiß ich selbst ;-) 80.143.230.106 21:11, 5. Okt 2005 (CEST)

Warum wird hier die Fourier-Reihe erklärt?

Die Inhalte zur Fourierreihe gehören nicht hier her. Diese Inhalte auslagern in Fourierreihe!

Akropolit 17:07, 22. Nov 2004 (CET)

Dieser Artikel ist so angelegt, dass er auf alle Varianten der Fourier-Transformation/-Reihe eingeht (auch auf die schwammigen Bezeichnungen), und auf die verallgemeinerte Transformation. Es wäre nicht gut diese Übersicht hier zu zerstückeln. Als Einzelartikel gibt es die Fourierreihe, die kontinuierliche Fourier-Transformation und die Diskrete Fourier-Transformation mit Beispielen. --Marcel Wiesweg 18:47, 23. Nov 2004 (CET)
Ich sehe hier trotzdem keinen Grund, wieso die Fourierreihen gross erklaert werden muessen, insbesondere wenn das im Artikel Fourierreihe nicht gemacht wird. Das ist fuer mich eine voellige Fehlkonzeption. Viele Gruesse --DaTroll 15:41, 17. Mär 2005 (CET)

Kurz und bündig

Kurz und bündig scheint mir gar nicht mehr kurz und bündig. Vielleicht bis auf die ersten zwei Gleichungen nach kontinuierliche Fourier-Transformation verschieben und explizit auf diesen Artikel hinweisen? --Marcel Wiesweg 18:47, 23. Nov 2004 (CET)

Warum Fouriertransformation?

Die Theorie ist jetzt klar - aber wie kann ich die Fouriertransformation anwenden, dass sie dem Menschen was bringt? Warum verwendet man die FT bei MP3, was kann ein Nachrichtentechniker mit einer Fourier-Transformation machen?

Kann jemand praktische Beispiele für die FT nennen, und kurz umschreiben, wie sie einen Prozess verbessert?

Danke, --Abdull 12:25, 27. Nov 2004 (CET)

Völlig unverständlich

Der Artikel versagt eindeutig beim Oma-Test. Vielleicht sollte erstmal kurz für Laien ganz doof erklärt werden, was es mit der Fourier-Transformation auf sich hat - sowas ist mit Bildern und einfachen Beispielen auch möglich. -- 217.231.150.165 23:38, 25. Jan 2005 (CET)

Kreisfrequenz - Fehler oder mein Unverstand?

Im Abschnitt 3.1 befindet sich der Satz

Die einzelnen Schwingungen haben die Kreisfrequenz , also die Frequenz .

Müsste die Frequenz dann nicht oder so sein, weil hier nur die Kreisfrequenz aufgelöst wird? Zumindest, dass nach der Auflösung der Kreisfrequenz noch drin ist, macht mich stutzig. --Dunkeltron 13:25, 17. Mär 2005 (CET)

Nee, das ist alles ok so. Denn f=2*pi*Kreisfrequenz. Hier steht nur zusätzlich das n (in der Kreisfrequenz, und damit auch in der Frequenz)--Jdiemer 14:26, 17. Mär 2005 (CET)
Danke! - supper schnelle Antwort. Jetzt hat mein Unverständnis allerdings noch Bestand: Ist ein beliebiger Faktor oder wie ist das definiert? Wäre ein Hinweis im Artikel sinnvoll oder albern? --Dunkeltron 15:21, 17. Mär 2005 (CET)
Nein, ω ist das übliche Formelzeichen für die Kreisfrequenz. Ich habe eine entsprechende Bemerkung im Artikel Kreisfrequenz plaziert, ich denke das genügt, es muss hier nicht wiederholt werden. Lass dich nicht verwirren: in der Summe hat jeder Kosinus ne andere Kreisfrequenz, nämlich n*ω (streng genommen könnte man schreiben )...--Jdiemer 18:13, 17. Mär 2005 (CET)
Jetzt ist der Groschen gefallen? Gestern wollte/konnte ich es offenbar nicht sehen. Manchmal hilft es, ein bisschen Abstand zu nehmen. Danke für die helfenden Worte :)--Dunkeltron 11:30, 18. Mär 2005 (CET)

"Aus der Euler-Formel folgt"???

Ich habe ja versucht, den Hinweis in 3.1

Aus der Euler-Formel folgt  und , 

wörtlich zu nehmen. Ich weiß, dass Eingangs der Hinweis auf Schulmathematik erwähnt wurde. Trotzdem hätte ein Hinweis auf die Definition von sin und cos über die Exponentialfunktion zumindest bei mir sehr genützt. Die Herleitung ist für mich hingegen nicht offenbar. Wenn ich nicht falsch liege, würde ich das gerne hinzufügen. --Dunkeltron 15:32, 17. Mär 2005 (CET)

Das fällt auch wirklich eher unter "Kenntnisse im Rechnen mit komplexen Zahlen", z.B.: cos a = Re ( cos a + i sin a ) = Re ( e^(ia) ), und der Realteil einer komplexen Zahl z ist u.a. Re(z) = 1/2 ( z + konjugiert-komplex z). Hat man sin und cos über die Exponentialfunktion definiert, folgt daraus einfach die Euler-Formel, hat man die Euler-Formel, bekommt man diese Definition von sin und cos. Du hast natürlich recht, dass das im Artikel sehr schnell geht. Ich habe mal einen Hinweis eingefügt, schau mal ob das reicht --Marcel Wiesweg 23:39, 19. Mär 2005 (CET)

Zeichenfehler?

Nochmals eine Frage zu 3.1: Bei folgendem handelt es sich doch nur um die Summendarstellung. Dann muss doch hinten bei rauskommen, oder? Scheint mir trivial, aber vielleicht habe ich ja was übersehen. --Dunkeltron 16:23, 17. Mär 2005 (CET)

Der Schritt davor enthält das (richtige) Minus, der Schritt danach versteckt auch, die ausgeschriebene Summe müsste falsch sein. Ich habe sie mal entfernt, scheint mehr zu verwirren als zu helfen. --Marcel Wiesweg 23:39, 19. Mär 2005 (CET)

Komplexe Darstllung

Der nullte Koeffizient muß c0 = a0/2 sein, sonst paßt die ganze Summation nicht.

Anliegen

Ich möchte mich dem Anliegen von GeorgScholz anschließen! So versteht man nur Bahnhof.

Auch ich kann mich diesem Anliegen nur anschließen!! Ich fände auch eine Definition der Fourier -Transformation entlang der Imaginären Achse und nicht der Reellen Achse sinvoller um die Zusammenhänge zwischen Laplace und Fourier-Transformation herauszustellen. Als Herleitung würde ich die Existenz der FT für Eigenfunktionen von LTI Sytemen (e^pt) verwenden ... was meint Ihr? Iznogood 14:38, 1. Sep 2005 (CEST)