Zum Inhalt springen

Diskussion:Einmaleins

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 16. Dezember 2011 um 03:15 Uhr durch 91.89.69.192 (Diskussion) (Akkusativ gesetz der multiplikation: miep). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Letzter Kommentar: vor 13 Jahren von 91.89.69.192 in Abschnitt Akkusativ gesetz der multiplikation

9er-Regel

Ich möchte allen Eltern raten, diese 9-er-Regel (ihr wisst schon, 6*9 = 6*10-6 = 54) vor ihren Kindern auf keinen Fall zu erwähnen. Ich hab die damals benutzt und bin jetzt 22 und Informatikstudent und gelegentlich mache ich immer noch fast instinktiv diesen lästigen Zwischenschritt, der mir schon einige Kopfrechnungen versaut hat. Das Einmaleins muss (!) einfach auswendig gelernt werden, sonst hat das weitreichende Konsequenzen. Kann dieses Problem vielleicht jemand mit Quellen belegen und in den Artikel einbauen? --188.23.109.219 23:47, 8. Okt. 2010 (CEST)Beantworten

Ich würde aus gleichem Grund auch gerne den gesamten Teil "vereinfachtes Lernen" entfernen und werde das jetzt auch machen. Ich finde das aus eigener Erfahrung Kindern gegenüber nicht hilfreich, sondern eher als lebenslanges Ärgernis. --188.23.109.219 00:09, 9. Okt. 2010 (CEST)Beantworten

Also, ich habe mich damals mit noch ganz anderen Tricks um das 1×1 gedrückt, z.B. 6×8=6×2×2×2 oder 6×7=7×3×2. Mir ist nicht klar, warum man so einen trivialen Scheiß auswendig lernen sollte. Im Mathe-Leistungskurs fragt niemand mehr danach. Wenn du als Informatiker noch immer im Kopf rechnen musst, solltest du mal überlegen, ob du dir den richtigen Beruf ausgesucht hast. Und wenn du mit der 9er-Regel nicht zufrieden bist, kannst du auch mit 22 Jahren oder 23 oder 24 die Neunerfolge auswendig lernen oder sogar das große Einmaleins, wenn dir danach ist. Deshalb muss man noch lange nicht Kinder damit quälen. -- Sloyment 12:46, 21. Okt. 2011 (CEST)Beantworten

Trivialität & Co

"die meisten Einträge sind trivial" - was soll das heißen?

Das heißt übersetzt: ich verachte diese Einträge, weil ich super bin.

"trivial" ist kein Wort, das ins Wiki-Lexikon passt.

Es ist wertend und drückt Verachtung aus.

Trivial ist zwar wertend, drückt aber nicht Verachtung aus. Wo wir doch schon in einem Lexikon sind, schlag doch mal trivial nach! Es heißt nichts anderes als leicht zu erfassen und meint im Artikel, dass keiner auswendig lernt, dass 1x5=5 ist oder 3x10=30, sondern dass diese nach dem zugrundeliegenden einfachen Schema schnell im Kopf berechnet werden. Chloch 17:15, 6. Aug. 2008 (CEST)Beantworten


Muss, was jeder nach Besuch der Grundschule kennt bzw. kennen sollte, in einer Enzylopädie erklärt werden?? dibe 10:22, 3. Apr 2004 (CEST)

Ja, das ist sinnvoll. Wenn z.B. ein 22jähriger Informatiker die 9er-Folge nicht auswendig kann, und dies bedauert (s.o.), kann er sie hier nachschlagen. -- Sloyment 12:58, 21. Okt. 2011 (CEST)Beantworten

In der englischen wikipaedia ist beispielsweise multiplication erklärt: Multiplication is a quick way of adding identical numbers. ...

Danach geht es natürlich weiter mit wenig bekannten Informationen.

Vielleicht geht es ja auch auf der einmaleins Seite weiter mit weniger bekannten Infos. abwarten. The weaver 11:15, 3. Apr 2004 (CEST)

Hallo, was sind bekannte Informationen? All das, was Du kennst? Oder was die Mehrheit der Bevölkerung kennt? Oder alles, was man nach der Grundschule kennen sollte? Warum soll sich die Wikipedia nicht auf an Gründschüler richten? Wer entscheidet darüber, was bekannte Informationen sind, die in einer Enzyklopädie nichts verloren haben? Sind die aufbauenden Informationen noch verständlich, wenn die bereits bekannten Infos als Grundlage nicht nochmal wiederholt werden? Schöne Grüße --81.173.144.47 10:52, 13. Feb 2006 (CET)

Tabelle

Wieso sind die Multipilikationen bis 12 aufgeführt? Entweder bis 10 oder meinetwegen bis 20 aber doch nicht sowas... Wo bleibt da der Sinn? --Ĝù  dímelo   Alфabet fūr Deutŝland 22:53, 29. Apr. 2007 (CEST)Beantworten

Hat jemand vielleicht eine Tabelle vom großen Einmaleins? Am besten von 12 bis 20 (11 ist ja nun wirklich einfach ;))

Tabelle erweitert auf 20x20. Wäre schön, wenn noch jemand das kleine Einmaleins mit zwei fetten Linien abtrennen könnte. -- Sigbert 09:07, 11. Mai 2009 (CEST)Beantworten

Bildbeschreibung fehlt bei [[Bild:Xychart.gif]]

Der Artikel enthält ein Bild, dem eine Bildbeschreibung fehlt, überprüfe bitte, ob es sinnvoll ist, diese zu ergänzen. Gerade für blinde Benutzer ist diese Information sehr wichtig. Wenn du dich auskennst, dann statte bitte das Bild mit einer aussagekräftigen Bildbeschreibung aus. Suche dazu nach der Textstelle [[Bild:Xychart.gif]] und ergänze sie.

Wenn du eine fehlende Bildbeschreibung ergänzen willst, kannst du im Zuge der Bearbeitung folgende Punkte prüfen:
  • Namensraum Datei: Bilder sollte im Namensraum Datei liegen. Bitte ändere die alten Bezeichnungen Bild: und Image: in Datei:.
  • Skalierung: Außerhalb von Infoboxen sollten keine festen Bildbreiten (zum Beispiel 100px) verwendet werden. Für den Fließtext im Artikelnamensraum gibt es Thumbnails in Verbindung mit der automatischen Skalierung. Um ein Bild/eine Grafik in besonderen Fällen dennoch größer oder kleiner darzustellen, kann der „upright“-Parameter verwendet werden. Damit erfolgt eine prozentuale Skalierung, die sich an den Benutzereinstellungen orientiert. --SpBot 22:13, 1. Mär. 2009 (CET)Beantworten
Dieses Bild kommt von einer anscheinend kommerziellen Site, auf die auch unter der irreführenden Beschreibung "Descartes und das 1x1s" bei "Weiterführende" verlinkt ist. Dort von Descartes kein Wort, aber "Order now"… -- Lapidar 23:17, 18. Mai 2010 (CEST)Beantworten
Gewartet, gelöscht. -- Lapidar 22:55, 22. Mai 2010 (CEST)Beantworten

Mittleres Einmaleins

Happich erstmal rausgenommen, weils wirklich nicht besonders bekannt ist (eigentlich nur den Wikipedia-Klonen, siehe Google-Suche - 6 Ergebnisse, drei davon selber Text wie hier). Der Text wurde hier in den Artikel kommentar- und diskussionslos "mutig" eingefügt. Bitte die Behauptung plausibel und durch Quellenangabe nachvollziehbar machen, es sei bekannt. Gruß --Rax post 02:49, 10. Apr. 2009 (CEST)Beantworten

Descartes

Was soll die seltsame Formulierung mit "Descartes Erfindung"? Sind wir hier in einem Ratespiel? Ich nehme an, damit ist das Kartesische Koordinatensystem gemeint. Was soll die Grafik? (Also, warum reicht keine Tabelle?) Wenn ich nicht auf den Kopf gefallen bin und das alles richtig verstanden habe, würde ich den komplette Bereich von "Seit Descartes" bis zum Ende der Grafik ersetzen durch: "Ggf. ist eine Vertauschung der Reihenfolge der Zeilen (1er-Reihe unten, 2er-Reihe darüber, usw.) hilfreich, um beim Lernen gleichzeitig mit der Orientierung der Achsen des kartesischen Koordinatensystems vertraut zu werden. <und noch eine Tabelle, die allerdings nur bis vielleicht 5 geht und dann Ellipsen ("…") hat.>"

Quizmaster, was meinen Sie?

Wenn diese Form der Darstellung Einzug in den Schulunterricht gefunden hat, so sollte die normale große Tabelle entsprechend angepasst werden.

Meine persönliche Meinung dazu ist allerdings, dass eine Tabelle und das kartesische Koordinatensystem zunächst nicht so viel miteinander zu tun haben. In unserer Kultur ist es üblich, dass Tabellen von oben nach unten aufgebaut werden, während der erste Quadrant des kart. Koordninatensystems seinen Urprung unten hat. Daher bezweifele ich, dass die Einführung einer Ausnahme in der Welt der Tabellen (Einmaleins ist falsch herum, anders als alle anderen Tabellen) beim Verständnis der Orientierung der Koordinaten hilft, die ich (zumindest in Bezug auf die Y-Achse) als ohnehin intuitiv empfinde. Daher bitte ich um Quellenangabe dafür, dass es wirklich einfacher zu lernen ist.

-- Pemu 14:21, 7. Sep. 2009 (CEST)Beantworten

Quadratzahlen in tabellarischer Darstellung hervorheben

Was haltet ihr davon? Also ich fände das interessant und würde die Quadratzahlen mit einer anderen Hintergrundfarbe hervorheben. Damit meine ich nicht nur die Diagonale, sondern zum Beispiel auch das Ergebnis von 8x2. --Jobu0101 20:09, 27. Feb. 2010 (CET)Beantworten

Das kleine Einmaleins wird eigentlich nur bis 9 benötigt.

Dieses Tatsache wurde noch gar nicht im Artikel erwähnt und ist doch eigentlich bemerkenswert. Für das schriftliche Multiplizieren (das ist ja die Hauptanwendung des kleinen Einmaleins in der Grundschule) braucht man es nur bis 9x9. --Jobu0101 20:15, 27. Feb. 2010 (CET)Beantworten

Weil es keine Ziffer „10“ gibt? Dann „braucht“ man aber die 0er-Folge! -- Sloyment 12:52, 21. Okt. 2011 (CEST)Beantworten

Definition großes Einmaleins

Als großes Einmaleins gelten alle Multiplikationen von je zwei Zahlen zwischen 1 und 20.

Mindestens eine Zahl muss aber über zehn sein. Es beginnt also mit 1 x 11.--80.141.228.12 17:19, 8. Mär. 2010 (CET)Beantworten

Ich dachte das große Einmaleins beinhaltet auch das kleine. --Jobu0101 10:47, 10. Mär. 2010 (CET)Beantworten

Akkusativ gesetz der multiplikation

das akkusativ gesetz (vertauschungsgesetzt)erlaubt die beiden faktoren zu vetauschen(z.B.:a mal b . b mal a) (nicht signierter Beitrag von 77.22.46.9 (Diskussion | Beiträge) 14:43, 22. Apr. 2010 (CEST)) Beantworten

Das hat nicht mit dem Akkusativ (lat. accusare „anklagen“) zu tun. Du meinst wohl das Kommutativgesetz (lat. commutare „vertauschen“). --Jobu0101 16:58, 27. Apr. 2010 (CEST)Beantworten

ohh ...ja du hast recht ^^ :) aber was is dann des akkusakivgesetz ?? (nicht signierter Beitrag von 77.22.40.68 (Diskussion) 14:37, 19. Aug. 2010 (CEST)) Beantworten

Das gibt es, soweit mir bekannt, in der Mathematik nicht. --188.23.109.219 23:54, 8. Okt. 2010 (CEST)Beantworten

haha akkusativgesetz--91.89.69.192 01:59, 16. Dez. 2011 (CET)Beantworten

Nicht einfache Multiplikationen

Hallo! Sollte man nicht evtl in der Tabelle die 15 im Text als "ohne einfache Regeln auswendig gelernt werden müssen" Zahlen farbig unterlegen? --Meikel1965 Diskussion 09:14, 26. Nov. 2010 (CET)Beantworten