Zum Inhalt springen

Liste numerischer Verfahren

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 26. September 2005 um 15:27 Uhr durch Zemke (Diskussion | Beiträge) (Berechnung von [[Eigenwert]]en). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Die Liste numerischer Verfahren führt Verfahren der numerischen Mathematik nach Anwendungsgebieten auf.

Nichtlineare Gleichungssysteme

  • Finite-Elemente-Methode: Ein modernes, flexibles Verfahren zur Lösung vor allem elliptischer partieller Differentialgleichungen.
  • Finite-Volumen-Verfahren: Ein modernes Verfahren zur Lösung von Erhaltungsgleichungen.
  • Finite-Differenzen-Verfahren: Ein klassisches Verfahren für beliebige partielle Differentialgleichungen.
  • Randelementmethode: Ein Verfahren zur Lösung elliptischer PDGLen, wobei lediglich der Gebietsrand und nicht das Gebiet selbst (wie z.B. bei der FEM) zu diskretisieren ist.
  • Spektralmethode: Ein neuartiges Verfahren, das zur Diskretisierung Polynome sehr hoher Ordnung benutzt.
  • Level-Set-Methode: Eine moderne Methode zur Verfolgung von bewegten Rändern.
  • Leapfrog-Verfahren: Abgewandeltes Eulerverfahren mit Termen nur zweiter Ordnung (z.B. für Planetenbewegung), bei dem die Zeitschritte für Ort und Geschwindigkeit um die halbe Integrationschrittweite versetzt sind. Dadurch wird höhere Genauigkeit und Zeitsymmetrie erreicht.

Berechnung von Eigenwerten

  • QR-Algorithmus: Berechnung aller Eigenwerte, allerdings mit hohen Kosten verbunden.
  • LR-Algorithmus: Auch Treppeniteration genannt, ein dem QR-Verfahren vergleichbarer aber weniger stabiler Algorithmus.
  • Potenzmethode: Diese erlaubt die Berechnung des betragsgrößten Eigenwertes.
  • Unterraumiteration: Diese ist eine mehrdimensionale Erweiterung der Potenzmethode und erlaubt die gleichzeitige Berechnung mehrerer der betragsgrößten Eigenwerte.
  • Inverse Iteration: Diese erlaubt die schnelle Berechnung von Eigenwerten nahe eines Shifts.
  • Rayleigh-Quotienten-Iteration: Eine spezielle sehr schnell konvergierende Variante der Inversen Iteration mit Shift.
  • Lanczos-Verfahren: Berechnung einiger Eigenwerte von großen dünnbesetzten Matrizen.
  • Arnoldi-Verfahren: Berechnung einiger Eigenwerte von großen dünnbesetzten Matrizen.
  • Jacobi-Davidson-Verfahren: Berechnung einiger Eigenwerte von großen dünnbesetzten Matrizen.

Sonstiges