Isomorphiesatz
Die Isomorphiesätze sind zwei (bzw. drei) mathematische Sätze, die Aussagen über Gruppen machen. Sie lassen sich auch auf komplexere algebraische Strukturen übertragen und sind somit ein wichtiges Resultat der universellen Algebra. Die Isomorphiesätze sind eine direkte Folgerung aus dem Homomorphiesatz der entsprechenden algebraischen Struktur.
Die Nummerierung der Isomorphiesätze ist uneinheitlich; manchmal wird der Homomorphiesatz als erster Isomorphiesatz bezeichnet, die unten angegebenen Sätze heißen dann dementsprechend zweiter bzw. dritter Isomorphiesatz.
Gruppentheorie
Erster Isomorphiesatz
Es seien eine Gruppe, ein Normalteiler in und eine Untergruppe von . Dann ist auch das Produkt eine Untergruppe von , ist ein Normalteiler in und die Gruppe ist ein Normalteiler in . Es gilt:
Dabei bezeichnet die Isomorphie von Gruppen.
Der Isomorphismus, der dabei üblicherweise gemeint ist, wird als kanonischer Isomorphismus bezeichnet. Er wird gemäß dem Homomorphiesatz von der surjektiven Abbildung
induziert.
Zweiter Isomorphiesatz
Es seien eine Gruppe, ein Normalteiler in und eine Untergruppe von , die Normalteiler in ist. Dann gilt:
In diesem Fall kann man kanonische Isomorphismen in beide Richtungen angeben, einerseits induziert durch
andererseits durch
Vektorräume, abelsche Gruppen oder Objekte einer beliebigen abelschen Kategorie
Es seien
- Vektorräume über einem Körper
- oder abelsche Gruppen
- oder allgemeiner Moduln über einem Ring
- oder ganz allgemein Objekte einer abelschen Kategorie.
Dann gilt:
Auch hier steht das Symbol für die Isomorphie der entsprechenden algebraischen Strukturen bzw. Objekte in der jeweiligen Kategorie.
Die kanonischen Isomorphismen sind eindeutig dadurch bestimmt, dass sie mit den beiden kanonischen Pfeilen von bzw. kompatibel sind.
Eine weitreichende Verallgemeinerung der Isomorphiesätze liefert das Schlangenlemma.