Elliptic Curve DSA
Der Elliptic Curve Digital Signature Algorithm (ECDSA) (deutsch: digitale Signatur Algorithmus mit elliptischen Kurven) ist eine Variante des Digital Signature Algorithm (DSA) der Elliptische Kurven Kryptographie verwendet.
Unterschiede zum normalen DSA Verfahren
Generell wird bei der Elliptic Curve Cryptography eine Faustregel angewandt bei der die Größe des Public Keys etwa dem doppelten des Sicherheitsnivau entsprechen sollte (in bit). Bei einer Schlüssellänge von 80 bits würde es bedeuten das der Angreifer Signaturen generieren muss um den privaten Schlüssel zu finden. Im Verhältnis entspricht ein 1024 bit großer Schlüssel etwa einem öffentlichen Key im ECDSA Verfahren mit 160 bit. Die Signatur Größe ist jedoch gleich groß bei DSA und ECDSA: bits, wobei das Scherheits Nivau in bit ist, d.h. 320 bits für eine Sicherheits Nivau von 80 bits.
Signatur Erzeuguns Algorithmus
Suppose Alice wants to send a signed message to Bob. Initially, the curve parameters must be agreed upon. is the field size; is an indication of the basis used; and are two field elements that define the equation of the curve; is an optional bit string that is present if the elliptic curve was randomly generated in a verifiable fashion; is a base point of prime order on the curve (i.e., ); is the order of the point ; and is the cofactor (which is equal to the order of the curve divided by ).
Also, Alice must have a key pair suitable for elliptic curve cryptography, consisting of a private key (a randomly selected integer in the interval ) and a public key (where ). Let be the bit length of the group order .
For Alice to sign a message , she follows these steps:
- Calculate , where HASH is a cryptographic hash function, such as SHA-1, and let be the leftmost bits of .
- Select a random integer from .
- Calculate , where . If , go back to step 2.
- Calculate . If , go back to step 2.
- The signature is the pair .
When computing , the string resulting from shall be converted to an integer. Note that can be greater than but not longer[1].
It is crucial to select different for different signatures, otherwise the equation in step 4 can be solved for , the private key: Given two signatures and , employing the same unknown for different known messages and , an attacker can calculate and , and since (all operations in this paragraph are done modulo ) the attacker can find . Since , the attacker can now calculate the private key . This cryptographic failure was used, for example, to extract the signing key used in the PlayStation 3 gaming console.[2]
Signature verification algorithm
For Bob to authenticate Alice's signature, he must have a copy of her public key . If he does not trust the source of , he needs to validate the key ( here indicates the identity element):
- Check that is not equal to and its coordinates are otherwise valid
- Check that lies on the curve
- Check that
After that, Bob follows these steps:
- Verify that and are integers in . If not, the signature is invalid.
- Calculate , where HASH is the same function used in the signature generation. Let be the leftmost bits of .
- Calculate .
- Calculate and .
- Calculate .
- The signature is valid if , invalid otherwise.
Note that using Straus's algorithm (also known as Shamir's trick) a sum of two scalar multiplications can be calculated faster than with two scalar multiplications.[3]
Siehe Auch
Literaturverweise
- ↑ FIPS 186-3, pp. 19 and 26
- ↑ http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf, page 123–128
- ↑ http://www.lirmm.fr/~imbert/talks/laurent_Asilomar_08.pdf The Double-Base Number System in Elliptic Curve Cryptography
Literaturverweise
- Accredited Standards Committee X9, American National Standard X9.62-2005, Public Key Cryptography for the Financial Services Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA), November 16, 2005.
- Certicom Research, Standards for efficient cryptography, SEC 1: Elliptic Curve Cryptography, Version 2.0, May 21, 2009.
- López, J. and Dahab, R. An Overview of Elliptic Curve Cryptography, Technical Report IC-00-10, State University of Campinas, 2000.
- Daniel J. Bernstein, Pippenger's exponentiation algorithm, 2002.
- Daniel R. L. Brown, Generic Groups, Collision Resistance, and ECDSA, Designs, Codes and Cryptography, 35, 119-152, 2005. ePrint version
- Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart, editors, Advances in Elliptic Curve Cryptography, London Mathematical Society Lecture Note Series 317, Cambridge University Press, 2005.
- Darrel Hankerson, Alfred Menezes and Scott Vanstone, Guide to Elliptic Curve Cryptography, Springer, Springer, 2004.
Weblinks
Vorlage:Crypto navbox <nowiki>