Cellulose
Strukturformel | |||||||
---|---|---|---|---|---|---|---|
![]() Ein Glucosedimer, dargestellt in Sesselkonformation (Cellobiose-Einheit) | |||||||
Allgemeines | |||||||
Name | Cellulose | ||||||
CAS-Nummer | 9004-34-6 | ||||||
Kurzbeschreibung |
weißes geruchloses Pulver [1] | ||||||
Eigenschaften | |||||||
Aggregatzustand |
fest [1] | ||||||
Dichte |
~1,5 g/cm3 [1] | ||||||
Löslichkeit |
unlöslich in Wasser [1] | ||||||
Sicherheitshinweise | |||||||
| |||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. |
Die Cellulose (häufig auch Zellulose) ist der Hauptbestandteil von pflanzlichen Zellwänden (Massenanteil etwa 50 %) und damit die häufigste organische Verbindung und auch das häufigste Polysaccharid (Vielfachzucker). Sie ist unverzweigt und besteht aus mehreren hundert bis zehntausend β-D-Glucose-Molekülen (β-1,4-glykosidische Bindung) bzw. Cellobiose-Einheiten. Die Cellulosemoleküle lagern sich zu höheren Strukturen zusammen, die als reißfeste Fasern in Pflanzen häufig statische Funktionen haben. Cellulose ist bedeutend als Rohstoff zur Papierherstellung, aber auch in der chemischen Industrie und anderen Bereichen.
Chemie
Cellulose ist ein PolymerHaHaHa (Polysaccharid = Vielfachzucker) aus dem Monomer Cellobiose, einem Disaccharid. Die Monomere sind durch β-1,4-glycosidische Bindungen miteinander verknüpft. Die Cellobiose selbst besteht aus zwei Molekülen des Monosaccharids (Einfachzuckers) Glucose. Hier liegt ebenfalls eine β-1,4-glycosidische Bindung vor, so dass häufig auch die Glucose als Monomer der Cellulose definiert wird. Die Glucosemoleküle sind in Cellulose jeweils um 180° zueinander verdreht. Dadurch erhält das Polymer, anders als z. B. das Glucose-Polymer Stärke, eine lineare Form. Die Verknüpfung der Monomere erfolgt durch eine Kondensationsreaktion, bei der zwei Hydroxygruppen (-OH) ein Wassermolekül (H2O) bilden und das verbleibende Sauerstoffatom die ringförmige Grundstruktur (Pyranring) der beiden Monomere verbindet. Neben dieser starken, kovalenten Bindung werden intramolekular zusätzlich die weniger starken Wasserstoffbrücken ausgebildet.[2] Häufig besteht ein Cellulosemolekül aus mehreren tausend Glucoseeinheiten.
Eigenschaften
Cellulose ist in Wasser und in den meisten organischen Lösungsmitteln unlöslich. Lösungsmittel wie Dimethylacetamid/Lithiumchlorid oder Dimethylsulfoxid/Tetrabutylammoniumfluorid sowie Ammoniak/Cu2+ (Schweizers Reagens) vermögen jedoch Cellulose zu lösen. Sie kann durch starke Säuren gespalten werden. Mit konzentrierten Säuren bei erhöhter Temperatur kann die Cellulose zu Glucose abgebaut werden, indem die glycosidischen Bindungen gespalten werden.
Der Chemiekonzern BASF hat ein Verfahren entwickelt, bei dem Cellulose in einer ionischen Flüssigkeit rein physikalisch gelöst wird. Diese Lösung kann für chemische Synthesen verwendet werden, die bisher nicht möglich waren.[3]
Biosynthese

In den meisten Pflanzen hat Cellulose eine grundlegende Bedeutung als Struktursubstanz. Fasern in verholzenden und nichtverholzenden Pflanzen bestehen aus einer Vielzahl von Fibrillen, die wiederum aus zahlreichen, parallel zueinander angeordneten Cellulosemolekülen bestehen. Cellulose-Mikrofibrillen werden in der Plasmamembran einer Zelle in sogenannten Rosettenkomplexen synthetisiert. Diese enthalten das Enzym Cellulose-Synthase, welches β-D-Glucane (D-Glucosepolymere mit β-Bindung) herstellt und dabei das erste Kohlenstoff-Atom eines D-Glucosemoleküls mit dem vierten Kohlenstoff-Atom eines anderen D-Glucosemoleküls verknüpft. Die Herstellung der Glucankette erfordert zwei essentielle Schritte. Zuerst spaltet Saccharose-Synthase das Disaccharid (Zweifachzucker) Saccharose in seine Monomere Glucose und Fructose, um so Glucose bereitzustellen. Die Glucose wird nun durch die Cellulose-Synthase mit Uridindiphosphatglucose (UDP-G) verknüpft. In einem weiteren Schritt wird nun die gebundene Glucose auf den nichtreduzierten Zucker der wachsenden Glucankette übertragen. Anschließend wandert die Glucankette bzw. das Enzym weiter, sodass ein weiterer Syntheseschritt stattfinden kann.
Cellulose wird in der Plasmamembran gebildet und vernetzt sich untereinander zu fibrillären Strukturen. Anschließend erfolgt die räumliche Anordnung der Cellulosefibrillen durch Mikrotubuli.
Nutzung
Hauptsächlich aus Cellulose bestehendes Pflanzenmaterial wird vom Menschen seit der Altsteinzeit als Brennstoff zum Kochen und Heizen genutzt. Cellulose ist daneben ein wichtiger Rohstoff für stoffliche Nutzungen, aber auch als natürlicher oder zugesetzter Bestandteil von Nahrungs- und Futtermitteln von Bedeutung. Da Cellulose zudem in fast allen Arten pflanzlicher Biomasse vorkommt, ist sie auch in vielen anderen Bereichen wichtig, wie z. B. in Holz (Lignocellulose) als Baustoff etc.
Rohstoff
Cellulose ist ein wichtiger Rohstoff zur Papierherstellung. Als Ausgangsrohstoff dient das lignin- und cellulosereiche Holz. Aus diesem wird Holzschliff hergestellt, das für Papier weniger hoher Qualität verwendet wird. Durch Entfernen des Ligninanteils kann Zellstoff verwendet werden, der hauptsächlich aus Cellulose besteht und für Papiere höherer Qualität verwendet wird.
In der Bekleidungsindustrie werden die hauptsächlich aus Cellulose bestehenden Pflanzenfasern für verschiedene Stoffe verwendet. Beispiele sind Baumwolle sowie Bastfasern des Lein (Flachs), die zu Leinen verarbeitet werden. Auch synthetische Cellulosefasern können hergestellt werden. Dazu wird eine Lösung von Cellulosemolekülen natürlicher Herkunft zu Fäden verarbeitet, der sogenannten Regeneratfaser (z. B. Viskose).
Ein weiteres Cellulose-Regenerat ist Cellophan (Cellulosehydrat), das in Form von Folien ein verbreitetes Verpackungsmaterial ist.
Unterschiedlichste Cellulosederivate finden vielfältige Anwendung, wie z. B. Methylcellulose, Celluloseacetat und Cellulosenitrat in der Bau-, Textil- und chemischen Industrie. Vom Cellulosenitrat abgleitet ist Zelluloid, der erste Thermoplast.
Da Cellulose in der Natur in großen Mengen verfügbar ist, wird versucht, diesen nachwachsenden Rohstoff z. B. auch als Biokraftstoff Cellulose-Ethanol verfügbar zu machen. Derzeit wird intensiv geforscht, um pflanzliche Biomasse, wie vor allem Holz und Stroh, dafür zu erschließen.
Cellulose kann auch als natürliches Dämmmaterial dienen.[4] Dazu wird sortiertes Zeitungspapier in einem mechanischen Prozess zunächst zerkleinert. Der gewonnene Cellulosedämmstoff kann fugenlos eingeblasen und für die Wärmedämmung und als Schallschutz verwendet werden. Das Verfahren wird in Kanada und den USA seit ca. 1940 angewendet. Vorteil von diesem Dämmstoff ist die umweltschonende Herstellung, bzw. die weitere Verwendung von sortiertem Zeitungspapier.
Im Labor kann es bei der Auftrennung von Stoffgemischen als Füllmaterial für die Säulenchromatographie verwendet werden.
Nahrung
Wahrscheinlich können alle "höheren" Lebewesen einschließlich der typischen Pflanzenfresser Cellulose im Gegensatz zu Stärke nicht selbst verdauen, obwohl beide Moleküle nur aus tausenden von Traubenzuckermolekülen zusammengesetzt sind. Meist besitzen sie nur die Enzyme, die α-1,4- oder α-1,6-glycosidische Bindungen, wie z. B. in Stärke, aufschließen können (Amylasen), nicht aber die anders geformten β-1,4-glycosidischen Bindungen der Zellulose. Deshalb können sie den hohen Energiegehalt dieses Kohlenhydrates nur mit Hilfe von bestimmten symbiontischen (s. Symbiose) Bakterien ausnutzen, die die passenden Cellulasen entwickelt haben und in ihrem Darm leben.
So besitzt der Mensch keine Verdauungsenzyme für den Abbau von Cellulose. Mit Hilfe anaerober Bakterien im ersten Teil des Dickdarms, dem Blinddarm und dem aufsteigenden Colon wird nur ein Teil der Cellulose aus der Nahrung zu kurzkettigen Fettsäuren abgebaut. Über die Colonschleimhaut werden sie resorbiert und vom Stoffwechsel verwertet. Cellulose ist, neben Hemicellulosen, Pektin und Lignin, ein wichtiger pflanzlicher Ballaststoff der menschlichen Nahrung.
Auch andere Lebewesen mit ähnlich aufgebautem Verdauungssystem (Monogastrier), wie beispielsweise Schweine, können Cellulose nicht effektiv verdauen.
Wiederkäuer verdauen einen großen Teil der Cellulose und anderer Polysaccharide im Pansen. Auch hier sind anaerobe Bakterien beteiligt, die die Cellulose zu Fettsäuren umsetzen. Ähnliches gilt für Pferde und Wassergeflügel, bei denen die Verarbeitung jedoch im Dickdarm stattfindet. Auch die vielen Pflanzen fressenden Insekten, wie beispielsweise das Silberfischchen (Lepisma), sind nur mit Hilfe von Mikroorganismen in der Lage, Cellulose zu verdauen.
Die meisten Bakterien und Pilze jedoch können über ihre Cellulasen die Cellulose nur bis zum Glucosedimer Cellobiose zersetzen. Einige wenige Protozoen und Pilze wie Aspergillus-, Penicillium- und Fusarium-Arten besitzen zusätzlich die notwendigen β-1,4-Glucosidasen oder Cellobiasen, welche die Cellobiose in Glucose aufspalten.[5] Manche holzzersetzenden Pilze wie Ceriporiopsis subvermispora können Cellobiose auch über die Cellobiosedehydrogenase (CDH), ein extrazelluläres Hämoflavoenzym, oxidativ abbauen. Dabei entsteht statt der Glucose Gluconsäure.[6]
Lebensmittelzusatzstoff
Auch in der Nahrungsmittel- und Pharmaindustrie wird Cellulose bzw. werden Cellulosederivate verwendet, z. B. als Verdickungsmittel, Trägerstoff, Füllstoff, Trennmittel, Überzugsmittel und Schaummittel. Als Lebensmittelzusatzstoff trägt Cellulose die Bezeichnungen E 460 bis E 466:
- E 460i – Mikrokristalline Cellulose
- E 460ii – Cellulosepulver
- E 461 – Methylcellulose
- E 463 – Hydroxypropylcellulose
- E 464 – Hydroxypropylmethylcellulose
- E 465 – Ethylmethylcellulose
- E 466 – Carboxymethylcellulose
Der Nachweis erfolgt mittels einer Iod-Zinkchloridlösung (Blaufärbung).
Siehe auch
Literatur
- Hans-Werner Heldt, Birgit Piechulla, Fiona Heldt: Pflanzenbiochemie 4. Auflage, Spektrum, Heidelberg / Berlin 2008, ISBN 978-3-827-41961-3.
- Peter Schopfer, Axel Brennicke: Pflanzenphysiologie, 7. Auflage, Spektrum, Heidelberg / Berlin 2010, ISBN 978-3-8274-2351-1.
- Lincoln Taiz, Eduardo Zeiger: Physiologie der Pflanzen (Originaltitel: Plant physiology übersetzt von Uta Dreßer), Spektrum, Heidelberg / Berlin 2000, ISBN 3-8274-0537-8.
- Dieter Hess: Pflanzenphysiologie. 11., vollständig neu bearbeitete und gestaltete Auflage, UTB 8393 / Ulmer, Stuttgart 2008 ISBN 978-3-8252-8393-3 (UTB) / ISBN 978-3-8001-2885-3 (Ulmer).
Weblinks
- Prof. Blumes Medienangebot: Nachweisreagenzien, Absatz 13: Iod-Zinkchlorid-Lösung
- x-plainmefood - Polysaccharide: Cellulose & Cellulosederivate, Eigenschaften und Anwendungen von Cellulose und ihren Derivaten
- Chemical synthesis of Cellulose, von Fumiaki Nakatsubo, in Wood and cellulosic chemistry, Ausgabe 2, 2001, von David N.-S. Hon, Nobuo Shira (als Google-Book)
Einzelnachweise
- ↑ a b c d e Datenblatt CELLULOSE für die Säulenchromatographie (PDF) bei Carl Roth
- ↑ Stryer, Lubert : Biochemie, Spektrum der Wissenschaft Verlag, 4. Auflage, korrigierter Nachdruck, Heidelberg, 1999, ISBN 3-86025-346-8, S.497
- ↑ Neue Zürcher Zeitung, Online-Ausgabe vom 21. Nov 2007: Chemikalien aus der Bioraffinerie.
- ↑ Fraunhofer Informationszentrum Raum und Bau (Baufachinformation.de): Organische Dämmstoffe
- ↑ M. Weidenbörner: Lexikon der Lebensmittelmykologie. Springer, 1999, ISBN 978-3-540-65241-0
- ↑ E. Duenhofen: Fermentation, purification and characterization of cellobiose dehydrogenase from Ceriporiopsis subvermispora. Diplomarbeit an der Universität für Bodenkultur Wien, 2005