Gammablitz

Gammablitze, Gammastrahlenblitze, Gammastrahlenausbrüche oder auch Gammastrahlenexplosionen (engl. Gamma-ray bursts, oft abgekürzt GRB) sind Energieausbrüche sehr hoher Leistung im Universum, von denen große Mengen elektromagnetischer Strahlung ausgehen.
Die Ursache der Gammablitze ist noch nicht geklärt. Man beobachtete einen Gammablitz erstmals am 2. Juli 1967 mit den amerikanischen Vela-Spionagesatelliten, die eigentlich zur Entdeckung oberirdischer Atombombentests dienten. Dass die Strahlen aus den Tiefen des Weltraums kamen, wurde erst 1973 durch Wissenschaftler im Los Alamos National Laboratory in New Mexico mit den Daten der Satelliten sicher festgestellt.
Die Bezeichnung „Gammablitz“ hat sich wahrscheinlich eingebürgert, weil die Vela-Satelliten zur Detektion der Gammastrahlung von Kernwaffenexplosionen gedacht und ausgerüstet waren. Auch wird elektromagnetische Strahlung mit Photonenenergien im keV-Bereich und höher oft allgemein als Gammastrahlung bezeichnet, wenn ihre Quelle und Entstehung nicht bekannt ist. Um Gammastrahlung im engeren, kernphysikalischen Sinn handelt es sich bei den Gammablitzen nicht.
Beobachtungen
Die Dauer von Gammablitzen beträgt wenige Sekunden bis maximal einige Minuten, die einzige bekannte Ausnahme (GRB 060218) dauerte 33 Minuten. Sie setzen in zehn Sekunden mehr Energie frei als die Sonne in Milliarden von Jahren. Für die Dauer seines Leuchtens ist ein Gammablitz „heller“ als alle übrigen Gammastrahlenquellen am Himmel. Gammablitze haben zudem ein „Nachglühen“ im optischen sowie im Röntgenspektrum, das in der Größenordnung von Tagen und Wochen langsam verblasst.

Die Gammastrahlung kann die Erdatmosphäre nicht unverändert durchdringen. Daher können Gammablitze
- direkt nur mit Weltraumteleskopen
- oder indirekt durch Messungen der in der Atmosphäre ausgelösten sekundären Strahlungs-„Schauer“ beobachtet werden.
Wegen ihrer kurzen Dauer und hohen Leuchtkraft und wegen des geringen räumlichen Auflösungsvermögens der Satellitenteleskope konnte man die Gammablitze lange Zeit weder bekannten (sichtbaren) Quellen zuordnen noch glaubhafte Vermutungen zu ihren Ursachen anstellen.
Zuerst wurden die Quellen der Blitze innerhalb unserer Milchstraße vermutet, weil Ereignisse derartiger Helligkeit bei weiterer Entfernung physikalisch nicht erklärbar schienen. Aus ihrer gleichförmigen Verteilung über den gesamten Himmel konnte man jedoch schließen, dass es sich um extragalaktische Ereignisse handelt. Andernfalls müssten sie sich in der Ebene der Milchstraße, in der sich die meisten Sterne der Milchstraße befinden, häufen oder, falls sie zum Halo der Milchstraße gehörten, in Richtung des galaktischen Zentrums.
1997 konnte mit Hilfe des Röntgen-Satelliten BeppoSAX erstmals das Nachglühen von Gammablitzen im Röntgenbereich beobachtet werden. Auf Grund der wesentlich exakteren Positionsbestimmung in der Röntgenastronomie konnte man gezielte Nachbeobachtungen im sichtbaren Licht machen und sie bekannten Quellen zuordnen. Man fand an den Stellen der Gammablitze weit entfernte Galaxien und konnte so direkt nachweisen, dass Gammablitze extragalaktische Quellen haben.
Dauer
GRBs lassen sich in zwei verschiedene Klassen einteilen. Die langen GRBs dauern im Mittel etwa 35 Sekunden, aber auch Längen von 2000 Sekunden wurden schon beobachtet. In einigen von diesen langen GRBs konnte man zeitgleich zum Gammablitz eine Kernkollaps-Supernova beobachten.
Am 4. September 2005 registrierte der NASA-Satellit Swift einen Ausbruch, der 200 Sekunden aufleuchtete und damit zu den langen GRBs gehört. Er kam aus einer 12,7 Milliarden Lichtjahre entfernten Region, also aus der Zeit des relativ jungen Universums. Dieser Gammablitz mit der Bezeichnung GRB 050904 stellt damit das (nach einem beobachteten Quasar) zweitälteste dokumentierte Ereignis dar.[1] Seit dem 13. September 2008 ist GRB 050904 auf Platz 3 der ältesten dokumentierten Ereignisse. Platz 2 nahm GRB 080913 ein, mit 70 Millionen Lichtjahren Vorsprung.[2]
Im Gegensatz dazu dauern kurze GRBs weniger als 2 Sekunden. Das optische Nachleuchten dieser Sorte von GRBs ist ebenfalls wesentlich kürzer als das der langen GRBs und konnte 2005 erstmals beobachtet werden. Kurze GRBs haben normalerweise härtere Röntgenspektren als die langen. Nachdem lange GRBs durch Beobachtungen mit Supernovae in Verbindung gebracht wurden, glaubt man mittlerweile im Verschmelzen zweier Neutronensterne in einem engen Doppelsternsystem den Mechanismus für kurze GRBs gefunden zu haben.
Den bislang stärksten beobachteten Gammablitz registrierte der Satellit Swift am 19. März 2008. Der Ausbruch kam von einem Objekt, das 7,5 Milliarden Lichtjahre von der Erde entfernt war. Er war 2,5 Millionen Mal heller als die leuchtstärkste bisher beobachtete Supernova und konnte mit dem bloßen Auge gesehen werden. Diese Explosion wurde unter der Nummer GRB 080319B katalogisiert.[3]
Spektrum
Die Strahlung zeigt ein kontinuierliches Spektrum mit Photonenenergien von weniger als 1 keV bis in den MeV-Bereich. Die meisten Spektren lassen sich durch eine Unterteilung in zwei Bereiche beschreiben. Im Bereich niedriger Energien bis zu einigen hundert keV (je nach GRB) nimmt mit zunehmender Energie der Photonen ihre Häufigkeit exponentiell ab. Im Bereich hoher Energien folgt die weitere Abnahme der Häufigkeiten einer Hyperbel. Wegen der weit ausgedehnten Skale der vorkommenden Energien unterscheiden sich die Häufigkeiten für die einzelnen Kanäle um viele Zehnerpotenzen. Daher ist eine lineare Darstellung des gesamten Spektrums in einem Diagramm nicht sinnvoll. Besser wird eine Leistungsgröße (Häufigkeit * Energie²) über der Energie doppelt logarithmisch aufgetragen. In dieser Darstellung zeigt sich für die meisten Spektren ein Maximum, nämlich bei derjenigen Photonenenergie, bei der die größte Leistung empfangen wurde. Diese Peak-Energie ist charakteristisch für den Gammablitz und liegt im Mittel der von BATSE untersuchten Gammablitze bei 250 keV.[4]
Das genaue phänomenologische Modell für das kontinuierliche Spektrum ist:[5]
- und sind freie Parameter; ; [6]
- ist mit der Peak-Energie über verknüpft.
Für und ergibt sich:
Dem Kontinuum sind schwache einzelne Spektrallinien überlagert, die allerdings stark dopplerverbreitert sind. Im nebenstehenden Bild ist eine Linie bei ungefähr 1600 keV zu erkennen. Möglicherweise ist dies ist eine stark blauverschobene und dopplerverbreiterte Eisen-K-Linie.[7] Solche Linien auf dem kontinuierlichen Spektrum geben Einblick in die physikalischen Prozesse der Entstehung der Strahlung. Die starke Blauverschiebung bedeutet, dass sich das Explosionsmaterial mit hochrelativistischer Geschwindigkeit auf den Beobachter zubewegt. Die Dopplerverbreiterung ergibt sich aus der starken thermischen Bewegung aufgrund der hohen Temperatur des emittierenden Materials.
Das Spektrum ist während der Dauer des GRB nicht konstant, lässt sich aber zu allen Zeiten mit den gleichen oben genannten Funktionen annähern, nur die Parameter ändern sich zeitlich. Im Allgemeinen nimmt die Peak-Energie und damit die Härte des Spektrums während der Dauer des Gammablitzes ab, kann aber im Verlauf des Blitzes bei Intensitätsschüben auch wieder kurz ansteigen.[8]
Mögliche Entstehung
Auf Grund der kurzen Dauer des Gammablitzes kann das Gebiet, aus dem er ausgesendet wurde, nicht sehr groß sein. Der Durchmesser eines langsamen Objekts (mit weniger als 10 % der Lichtgeschwindigkeit) ist maximal gleich der kürzesten Helligkeitsänderung multipliziert mit der Lichtgeschwindigkeit; wegen relativistischer Effekte kann dieser Bereich etwas größer sein, ist aber immer noch recht klein. Spezielle Supernovaexplosionen, so genannte Hypernovae, sind daher ein Kandidat für die Quellen der Gammablitze. Ein weiterer Kandidat sind verschmelzende Neutronensterne.
Würde ein Gammablitz gleichmäßig in alle Richtungen abstrahlen, so hätte beispielsweise der Gammablitz GRB-990123 vom Januar 1999 (siehe obiges Bild) eine Strahlungsleistung von über 1045 Watt haben müssen, entsprechend der 2,5·1018-fachen Sonnenleuchtkraft, also 2,5 Trillionen Sonnen. Selbst Quasare kommen nur auf 1040 Watt.
Man nimmt daher an, dass ein Gammablitz nur in zwei engen, entgegengesetzten, kegelförmigen Bereichen mit einem Öffnungswinkel von wenigen Grad ausgesandt wird, die Strahlung also wie bei einem Leuchtturm fokussiert ist. Dadurch verringert sich die erforderliche Strahlungsleistung, um die beobachtete Helligkeit zu erklären, um ca. 3 Zehnerpotenzen, ist jedoch immer noch extrem groß. Zudem lässt sich durch die Fokussierung die Heftigkeit der Energieausbrüche erklären, ohne dass grundlegende physikalische Prinzipien verletzt würden. Der Gammablitz schließlich entsteht durch Stoßwellen in dem sich mit nahezu Lichtgeschwindigkeit ausbreitenden Gas der Supernovaexplosion. Die gesamte freiwerdende Energiemenge ist ungefähr in derselben Größenordnung wie von einer Supernova, jedoch strahlt die Supernova den Großteil ihrer Energie in Form von Neutrinos ab. Modellrechnungen zeigen, dass der beobachtete Helligkeitsverlauf der Gammablitze gut zu den Annahmen passt. Die Beobachtungen von GRB 080319B (siehe oben) ergeben, dass innerhalb der kegelförmigen Bereiche je noch ein kleinerer, noch 'spitzkegeliger' Jet existiert, der praktisch keine Durchmesseraufweitung mehr aufzeigt. Bei dem erwähnten Gammablitz befand sich die Erde genau innerhalb dieses 'Laser-Strahls', was ein seltenes Ereignis darstellen sollte: Möglicherweise existiert bei jedem Gammablitz ein solcher zweiter Strahl, der aber nur beobachtet werden kann, wenn sich die Erde bzw. das Messgerät innerhalb dieses engen Strahlungskegel befindet. Bisher war dies nur bei GRB 080319B der Fall.

Den Unterschied zu einer normalen Supernova erklärt man sich dadurch, dass bei besonders massereichen Sternen von über 20 Sonnenmassen eine Hypernova entsteht, deren zentraler Kernbereich zu einem rasch rotierenden Schwarzen Loch kollabiert. Das umgebende Gas läuft in einer Akkretionsscheibe um das Schwarze Loch und heizt sich beim Einfall sehr stark auf, Gasjets werden dann senkrecht zur Scheibenebene ausgestoßen und erzeugen die Gammablitze. Die Verschmelzung zweier Neutronensterne führt zu ähnlichen Resultaten.
Auch wenn schon lange ein Zusammenhang mit Supernovae vermutet wurde, war es doch erst 1997 möglich, einen Gammastrahlenausbruch direkt in Verbindung mit solch einem Sternentod zu bringen. Der Satellit High Energy Transient Explorer (HETE) beobachtete einen Gammastrahlenausbruch, als dessen Quelle sich der Kollaps eines Sterns mit 15-facher Sonnenmasse herausstellte.
Am 27. Dezember 2004 wurde die Erde kurz vor Mitternacht (21:30 UTC) von einem Gamma- und Röntgenstrahlen-Ausbruch getroffen. Ein Neutronenstern hatte in Sekundenbruchteilen mehr Energie freigesetzt als die Sonne in 100.000 Jahren. Die Wellenfront in etwa 50.000 Lichtjahren Entfernung von der Quelle war intensiver als der stärkste jemals gemessene Strahlungsausbruch unserer Sonne. Forscher in Australien berichteten, die Riesenexplosion des Neutronensterns SGR 1806-20 habe ihn für eine Zehntelsekunde heller als den Vollmond gemacht. Er sei damit das hellste Objekt außerhalb unseres Sonnensystems, das je ermittelt worden sei. Der Ausbruch von GRB 041227 am 27. Dezember 2004 dauerte nur 0,2 Sekunden.
Kurzzeitig glaubten Astronomen, dass Magnetare (instabile junge Neutronensterne, die von einem extrem starken Magnetfeld umgeben sind) die Quelle besonders kurzer Gammablitze sein könnten. Doch die Magnetar-Theorie ist wahrscheinlich falsch, wie weitere Beobachtungen im Jahr 2005 ergaben. So konnte die Sonde HETE-2, die bereits seit Oktober 2000 im All ist, am 9. Juli 2005 einen Gammablitz von nur 70 Millisekunden Dauer auffangen. In höchster Eile richteten Wissenschaftler die Weltraumteleskope Hubble und Chandra sowie das dänische 1,5-Meter-Teleskop im chilenischen La Silla auf die Explosion aus. Auf diese Weise entstanden die ersten Bilder vom Nachglühen eines kurzen Gammablitzes im Bereich des optischen Lichts.
Die Analysen ergaben: Kurze Gammablitze werden verursacht, wenn zwei enorm massereiche Neutronensterne oder aber ein Neutronenstern und ein Schwarzes Loch umeinander kreisen und schließlich kollidieren.
Spekulationen über die Folgen „naher“ Gammablitze
Möglicher Mechanismus
Der unmittelbare, sofortige Schaden durch einen Gammablitz, der direkt auf die Erde gerichtet ist, wäre nach den Ergebnissen einer Studie begrenzt[9], da Gammablitze meist nur kurz sind und ein großer Teil der Gammastrahlen den Erdboden nicht erreicht. Die Strahlung wird nämlich in der Atmosphäre absorbiert, wobei unter Anderem Stickoxid entsteht. Auch wäre die vom Gammablitz abgewandte Erdseite von dem Gammablitz nicht sofort betroffen, da die Gammastrahlung den Planeten nicht durchdringen kann. Ein ausreichend naher Gammablitz bildet aber so viel Stickoxid in der Atmosphäre, dass die Ozonschicht schwer geschädigt würde. Dies könnte auch die unberührte Erdseite stark beeinflussen.
Historisches Massenaussterben
Eventuell war sogar eines der größten Massenaussterben der Erdgeschichte durch einen Gammablitz in unserer Milchstraße ausgelöst worden. Es wird beispielsweise über ein Ereignis vor 443 Millionen Jahren (Ende des Ordoviziums) spekuliert. In Folge eines ordovizischen Gammablitzes wäre die UV-Strahlung der Sonne nach Zerstörung der Ozonschicht ungehindert in die obersten Wasserschichten der Urozeane eingedrungen. Dort könnten Organismen, die nahe der Wasseroberfläche lebten, abgetötet worden sein (Landlebewesen gab es noch nicht). Als Beleg für ein solches Szenario wird angeführt, dass am Ende des Ordoviziums viele nahe der Wasseroberfläche lebende Trilobiten ausstarben.[10] [11]
Zukünftige Gefahren?
Wissenschaftler wurden beauftragt herauszufinden, welche Konsequenzen der Treffer eines in der Nähe (ca. 500 Lichtjahre) entstehenden Gammablitzes auf die Erde hätte.[9] Die Untersuchung sollte auch helfen, Massenaussterben auf der Erde zu klären und die Wahrscheinlichkeit von extraterrestrischem Leben einschätzen zu können. Im Ergebnis vermuten Wissenschaftler, dass ein Gammablitz, der in der Nähe unseres Sonnensystems entsteht und die Erde trifft, ein Massensterben auf dem gesamten Planeten auslösen könnte. Die zu erwartende schwere Schädigung der Ozonschicht würde die globale Nahrungsmittelversorgung zusammenbrechen lassen sowie zu langanhaltenden Veränderungen des Klimas und der Atmosphäre führen. Dies würde ein Massenaussterben auf der Erde bewirken und die Weltbevölkerung auf beispielsweise 10 Prozent ihres jetzigen Wertes schrumpfen lassen.
Der Schaden durch einen Gammablitz wäre deutlich höher als der durch eine Supernova, die sich in gleicher Entfernung wie der Gammablitz ereignet. Gammablitze jenseits von 3.000 Lichtjahren stellen nach der Studie keine Gefahr dar.
Erwähnenswerte Gammablitze
GRBs von besonderer historischer oder wissenschaftlicher Bedeutung:
- 670702: Der erste GRB, der entdeckt wurde.
- 970228: Der erste GRB, bei dem erfolgreich ein Nachleuchten festgestellt werden konnte.
- 970508: Der erste GRB mit einer exakt bestimmten Rotverschiebung (ein Wert, der es Astronomen ermöglicht, die Entfernung eines Ereignisses oder Objekts zu bestimmen).
- 980425: Der erste GRB, der in Verbindung mit einer Supernova (SN 1998bw) beobachtet wurde; zeigte eine enge Beziehung zwischen SN und GRBs auf.
- 990123: Der erste GRB, bei dem eine Emission im sichtbaren Bereich festgestellt wurde. (siehe Bild oben)
- 041227: Die Erde wird von einem gewaltigen Gammastrahlenausbruch getroffen, dessen Wellenfront von einem Stern in nur 50.000 Lj Entfernung ausging.
- 050509B: Der erste kurze GRB, bei dem der Ursprungskörper festgestellt werden konnte (unterstützte die Theorie, dass kurze GRB nicht mit Supernovae in Verbindung stehen).
- 050724: Ein kurzer GRB, als dessen Ursprung ein um ein Schwarzes Loch kreisender Neutronenstern festgestellt wurde.
- 050904: mit einer Rotverschiebung von 6,29 der alte Entfernungsrekord
- 080319B: Hellster GRB und hellste Supernova, die bis dato entdeckt wurden (absolute Helligkeit: -36 mag); außerdem erster GRB, der mit bloßem Auge beobachtet werden konnte (scheinbare Helligkeit: 5,76 mag); zugleich das am weitesten entfernte Objekt, das jemals mit bloßem Auge zu beobachten war.
- 080913: Bis zum Auftreten von 090423 der am weitesten von der Erde entfernte GRB mit einer Rotverschiebung von 6,7; damit das zweitälteste dokumentierte Ereignis im Universum.[12][13]
- 090423 - 23. April 2009, neuer Rekordhalter als am weitesten von der Erde entfernter GRB mit einer Rotverschiebung von 8,2 und bis zur Entdeckung der Galaxie UDFy-38135539 im September 2010[14] damit das älteste von der Erde aus beobachtete Objekt im Universum (ca. 630 Mio. Jahre nach dem Urknall).[15][16]
- 100621A: - 21. Juni 2010 wurde der absolut stärkste Gammablitz registriert, dieser ließ die Messinstrumente von Swift ausfallen; mit 143.000 (X-Strahlen) Photonen/s, 5 mal stärker als der bisherige Rekord (GRB 080319B)[17]
Einzelnachweise
- ↑ NASA: Most Distant Explosion detected, 12. September 2005
- ↑ NASA's Swift Catches Farthest Ever Gamma-Ray Burst (englisch)
- ↑ NASA: A Stellar Explosion You Could See on Earth!, 21. März 2008
- ↑ Ryde, F.: Spectral Aspects of the Evolution of Gamma-Ray Bursts. In: Gamma-Ray Bursts: The First Three Minutes, ASP Conference Series, Vol. 190, E S.109 Volltext bei ADS
- ↑ Ryde, F.: Spectral Aspects of the Evolution of Gamma-Ray Bursts. In: Gamma-Ray Bursts: The First Three Minutes, ASP Conference Series, Vol. 190, E S.108f Volltext bei ADS
- ↑ Die Auswertung der BATSE-Messungen ergaben Werte für hauptsächlich zwischen -1,25 und -0,25 und für 2,12 0,3
- ↑ Yi-Ping Qin, et al. Chin. J. Astron. Astrophys. 5 627-635 2005 Abstract
- ↑ Ford, L. A., Band, D. L., Matteson, J. L., Briggs, M. S., Pendleton, G. N., Preece, R. D.: BATSE observations of gamma-ray burst spectra. 2: Peak energy evolution in bright, long bursts. In: Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 439, no. 1, p. 307-321 Volltext bei ADS
- ↑ a b Deadly astronomical event not likely to happen in our galaxy, Study finds
- ↑ Löste Sternexplosion Massensterben aus?
- ↑ Did a gamma-ray burst initiate the late Ordovician mass extinction?
- ↑ NASA: NASA's Swift Catches Farthest Ever Gamma-Ray Burst - 13. September 2008
- ↑ Gamma-ray bursts Coordinates Network (NASA)
- ↑ Die entfernteste Galaxie lichtet den kosmischen Nebel, 20. Oktober 2010, ESO, abgerufen am 15. Dezember 2010
- ↑ Gamma-ray bursts Coordinates Network (NASA)
- ↑ NASA: New Gamma-Ray Burst Smashes Cosmic Distance Record
- ↑ Spiegel Online: Kosmisches Mega-Ereignis - Strahlungsblitz lässt Nasa-Satellit erblinden, 16. Juli 2010
Literatur
- David Alexander Kann, Steve Schulze und Sylvio Klose: Kosmische Gammastrahlenausbrüche. Neue Erkenntnisse und neue Rätsel in der Ära des Gammasatelliten Swift. Sterne und Weltraum 12/2007, Seite 42
- Neil Gehrels, Luigi Piro, Peter JT Leonard: Die stärksten Explosionen im Universum. Spektrum der Wissenschaft 03/2003, Seite 48
- Tödliche Sternexplosion. Astronomie Heute 01-02/2004, Seite 13
- J. S. Villasenor u.a.: Discovery of the short Gammaray burst GRB 050709. Nature 437, 855-858 (6 October 2005). Preprint
- P. Mészaros: Theories of Gamma-Ray Bursts. Annual Review of Astronomy and Astrophysics, Vol. 40, p. 137-169 (2002), doi:10.1146/annurev.astro.40.060401.093821
- J. van Paradijs, C. Kouveliotou, & R. Wijers: Gamma-Ray Burst Afterglows. Annual Review of Astronomy and Astrophysics, Vol. 38, p. 379-425 (2000), doi:10.1146/annurev.astro.38.1.379
- E. Fenimore: Gamma-ray bursts - 30 years of discovery.AIP Press, Melville 2004, ISBN 0-7354-0208-6
Siehe auch
- Gravitationsenergie als Energiequelle für die beobachteten Prozesse.
Videos
Vorlage:Alpha Centauri – Bitte nur die Nummer der Episode angeben! Vorlage:Alpha Centauri – Bitte nur die Nummer der Episode angeben! Vorlage:Alpha Centauri – Bitte nur die Nummer der Episode angeben!
Weblinks
- www.wissenschaft.de: Wenn Gammablitze sterben. – Satellit Swift beobachtet erstmals Übergang vom Blitz zum Nachglühen
- Swift: Gamma-ray burst Real-time Sky Map - basierend auf Daten des Nasa-Satelliten Swift
- NASA: Gamma-Ray Burst Coordinates Network