Automatische Archivierung
Auf dieser Seite werden Abschnitte monatlich
automatisch archiviert , deren jüngster Beitrag mehr als
30 Tage zurückliegt und die mindestens einen
signierten Beitrag enthalten.
F
→
=
q
⋅
(
E
→
s
t
a
t
+
v
→
×
B
→
)
{\displaystyle {\vec {F}}=q\cdot ({\vec {E}}_{stat}+{\vec {v}}\times {\vec {B}})}
D
2
4
f
⋅
1
c
{\displaystyle {\frac {D^{2}}{4}}f\cdot {\frac {1}{c}}}
N
=
D
2
4
f
⋅
1
c
{\displaystyle N={\frac {D^{2}}{4}}f\cdot {\frac {1}{c}}}
t
=
2
N
c
{\displaystyle t={\frac {2N}{c}}}
∮
E
→
d
s
→
=
−
N
d
Φ
d
t
{\displaystyle \oint {\vec {E}}d{\vec {s}}=-N{{d\Phi } \over {dt}}}
u
i
n
d
=
∮
E
→
d
s
→
=
−
N
d
Φ
d
t
{\displaystyle u_{ind}=\oint {\vec {E}}d{\vec {s}}=-N{{d\Phi } \over {dt}}}
∮
E
→
d
s
→
1
=
−
u
1
=
−
N
d
Φ
1
d
t
{\displaystyle \oint {\vec {E}}d{\vec {s}}1=-u_{1}=-N{{d\Phi 1} \over {dt}}}
−
u
1
(
t
)
N
1
=
∮
s
1
E
→
d
s
→
1
N
1
=
−
d
Φ
d
t
=
∮
s
2
E
→
d
s
→
2
N
2
=
−
u
2
(
t
)
N
2
{\displaystyle {{-u_{1}(t)} \over {N_{1}}}={{\oint _{s1}{\vec {E}}d{\vec {s}}_{1}} \over {N_{1}}}={{-d\Phi } \over {dt}}={{\oint _{s2}{\vec {E}}d{\vec {s}}_{2}} \over {N_{2}}}={{-u_{2}(t)} \over {N_{2}}}}
N
2
⋅
u
1
(
t
)
=
N
1
⋅
u
2
(
t
)
{\displaystyle N_{2}\cdot u_{1}(t)=N_{1}\cdot u_{2}(t)}
Φ
2
−
Φ
1
=
∫
t
1
t
2
u
1
(
t
)
d
t
{\displaystyle \Phi _{2}-\Phi _{1}=\int _{t_{1}}^{t_{2}}u_{1}(t)dt}
μ
r
→
∞
{\displaystyle \mu _{r}\to \infty }
∮
H
d
s
=
N
1
⋅
i
1
(
t
)
+
N
2
⋅
i
2
(
t
)
=
0
{\displaystyle \oint Hds=N_{1}\cdot i_{1}(t)+N_{2}\cdot i_{2}(t)=0}
N
1
⋅
i
1
=
−
N
2
⋅
i
2
{\displaystyle N_{1}\cdot i_{1}=-N_{2}\cdot i_{2}}
u
i
n
d
=
∮
E
→
d
s
→
{\displaystyle u_{ind}=\oint {\vec {E}}d{\vec {s}}}
∮
E
→
d
s
→
=
0
{\displaystyle \oint {\vec {E}}d{\vec {s}}=0}
∮
E
→
d
s
→
{\displaystyle \oint {\vec {E}}d{\vec {s}}}
σ
z
z
=
p
e
+
p
r
=
p
r
R
P
P
+
p
r
=
p
r
(
1
R
P
P
+
1
)
{\displaystyle \sigma _{zz}=p_{e}+p_{r}={\frac {p_{r}}{R^{PP}}}+p_{r}=p_{r}\left({\frac {1}{R^{PP}}}+1\right)}
p
r
=
σ
z
z
(
1
R
P
P
+
1
)
=
σ
z
z
⋅
R
P
P
R
P
P
+
1
{\displaystyle p_{r}={\frac {\sigma _{zz}}{\left({\frac {1}{R^{PP}}}+1\right)}}={\frac {\sigma _{zz}\cdot R^{PP}}{R^{PP}+1}}}
∮
E
→
d
s
→
=
0
{\displaystyle \oint {\vec {E}}d{\vec {s}}=0}
N
1
⋅
i
1
(
t
)
+
N
2
⋅
i
2
(
t
)
=
0
{\displaystyle N_{1}\cdot i_{1}(t)+N_{2}\cdot i_{2}(t)=0}
Φ
(
t
2
)
−
Φ
(
t
1
)
=
−
1
N
1
⋅
∫
t
1
t
2
u
1
(
t
)
d
t
<
∞
{\displaystyle \Phi (t_{2})-\Phi (t_{1})={{-1} \over N_{1}}\cdot \int _{t1}^{t2}u_{1}(t)dt<\infty }
∮
H
d
s
=
∑
I
=
0
{\displaystyle \oint Hds=\sum I=0}
D
z
p
=
μ
1
∗
(
(
ξ
2
+
q
1
2
)
∗
(
1
+
R
P
P
)
)
{\displaystyle Dzp=\mu _{1}*((\xi ^{2}+q_{1}^{2})*(1+R^{PP}))}
D
z
p
=
μ
1
⋅
(
(
ξ
2
+
q
1
2
)
∗
(
1
+
R
P
P
)
)
{\displaystyle Dzp=\mu _{1}\cdot ((\xi ^{2}+q_{1}^{2})*(1+R^{PP}))}
D
z
p
=
−
p
1
⋅
(
1
+
R
P
P
)
{\displaystyle Dzp=-p1\cdot (1+R^{PP})}
ϑ
=
R
(
T
)
−
R
0
R
0
α
⋅
∘
C
K
+
(
T
0
K
−
275
,
15
)
∘
C
{\displaystyle \vartheta ={\frac {R(T)-R_{0}}{R_{0}\alpha }}\cdot {\frac {^{\circ }C}{K}}+\left({\frac {T_{0}}{K}}-275,15\right)\,^{\circ }C}
</math>
u
i
n
d
=
∮
E
→
d
s
→
=
∫
B
F
E
D
A
E
→
d
s
→
+
∫
A
B
E
→
d
s
→
=
0
+
u
A
B
{\displaystyle u_{ind}=\oint {\vec {E}}d{\vec {s}}=\int _{BFEDA}{\vec {E}}d{\vec {s}}+\int _{AB}{\vec {E}}d{\vec {s}}=0+u_{AB}}