Zum Inhalt springen

Benutzer Diskussion:ulm

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 10. Oktober 2010 um 19:59 Uhr durch Kein Einstein (Diskussion | Beiträge) (Zentrifugalkraft). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Letzter Kommentar: vor 14 Jahren von Kein Einstein in Abschnitt Zentrifugalkraft
Hiermit verleihe ich Benutzer
ulm
das

Atom des Monats
der Redaktion:Physik
für
deinen engagierten und gelungenen Einstieg im Team der Redaktion
gez. --Kein_Einstein 19:49, 23. Jun. 2010 (CEST)Beantworten

Einladung zur Redaktion

Hallo ulm. Hiermit lade ich Dich ein, die Liste der Teilnehmer der Redaktion Physik mit einem Eintrag zu ergänzen. Wer sich in der Physik-QS zur Anlage von Teilchenphysikartikeln verpflichtet, und vorschlägt, eine Abkürzung in die Redaktion einzurichten, gehört ohne Zweifel dazu :-).---<)kmk(>- 21:09, 12. Jun. 2010 (CEST)Beantworten

Hm, ich werde darüber nachdenken. :-) Ich hatte mich bis jetzt noch nicht eingetragen, weil ich aus Zeitgründen keine konstante Mitarbeit garantieren kann. --ulm 21:21, 12. Jun. 2010 (CEST)Beantworten
Als Argumentationshilfe: Konstante Mitarbeit wird nicht verlangt und wird von vielen in der Liste eingetragenen Autoren auch nicht geleistet...---<)kmk(>- 21:32, 12. Jun. 2010 (CEST)Beantworten
+1! Gruß, Kein Einstein 21:47, 12. Jun. 2010 (CEST)Beantworten
Na gut. :-) --ulm 15:55, 13. Jun. 2010 (CEST)Beantworten
Herzlich Willkommen im Club!!---<)kmk(>- 21:15, 13. Jun. 2010 (CEST)Beantworten

Das musste mal gesagt werden

Hallo Ulrich. Du steigst furios in das Team der Redaktion Physik ein. Ich finde es wohltuend und sehr erfreulich, wie du unaufgeregt, kompetent und engagiert hier einen Bereich gefunden hast, wo du sehr positiv wirken kannst. Deshalb gebe ich mir die Ehre, dir mal ein kleines Atom an die virtuelle Brust zu heften. Grüße, Kein Einstein 19:49, 23. Jun. 2010 (CEST)Beantworten

Frequenzgang

Hallo Ulm, Frequenzgang bedeutet in seiner ursprünglichen Bedeutung "Funktion der Frequenz". Die besonders häufige Verwendung für Übertragungsfunktionen im jw-Bereich (die ausführliche Formulierung hieße: Frequenzgang des Übertragungsfaktors) kommt daher, daß das Übertragungsverhalten linearer Systeme zum Standardstoff mehrerer Hochschuldisziplinen gehört. Die Wortbedeutung im allgemeinen Sinne als "Funktion der Frequenz" ist in der Elektrotechnik so geläufig, daß mich der Widerstand gegen eine Nennung ernsthaft wundert. Auf fachlicher Ebene bin ich es gewohnt, daß man sich viel schneller einig wird, zumal es an eindeutigen Belegen nicht mangelt, siehe meine Spielwiese. -- Michael Lenz 01:56, 9. Jul. 2010 (CEST)Beantworten

Hallo, ich möchte hier nicht noch einen weiteren Diskussionsfaden aufmachen; das Thema wird bereits an zu vielen Stellen diskutiert, beispielsweise in der QS-Physik. --ulm 22:33, 9. Jul. 2010 (CEST)Beantworten
Das war nur ein Hinweis, damit Du abseits der etwas aufgeladenen Diskussion auch die relevanten Quellen für die etwas allgemeinere Definition (Frequenzgang = Frequenzfunktion) prüfen und Dir eine Meinung bilden kannst. Ich halte mich aus der Diskussion in Zukunft weitgehend heraus; das wird mir ein wenig zu dogmatisch. -- Michael Lenz 16:48, 10. Jul. 2010 (CEST) und Ergänzung -- Michael Lenz 17:58, 10. Jul. 2010 (CEST)Beantworten

Frequenzspektrum, Amplitudenspektrum u. ä.

Hallo Ulm, das Lemma "Amplitudenspektrum" wollte ich eigentlich nach "Frequenzspektrum" umleiten. Dabei habe ich irrtümlich Signalspektrum eingegeben, was Du zurecht rückgängig gemacht hast. Ich habe die Weiterleitung korrigiert und den Redundanzbaustein entfernt. Ich hoffe, es paßt jetzt so. Mit dem Lemma Phasenspektrum sollten wir m. E. ähnlich vorgehen. Es gehört wie das Amplitudenspektrum zum Frequenzspektrum dazu und kann im gleichen Artikel behandelt werden. Freundliche Grüße, -- Michael Lenz 17:58, 10. Jul. 2010 (CEST)Beantworten

Interwiki lb

Guten Tag,

Ich glaube bei der Bergrifferklärung Wurzel gehört auf lb:Wiki das französische Racine wohl dazu. Auf jeden Fall beschreibt die Französische Homonymie im den ersten Teil genau desselbe wie die luxemburgische Wurzel oder die deutsche Wurzel. Die Franzosen führen leider die mathematischen Begriffe mit Personennamen und Ortsnamen in derselben Begriffserklärung zusammen, weches in lux und deutsch eben nicht der Fall sein kann. Eigentlich sollten die Fransosen dazu 2 Homonymies führen. Ich glaube solche Sprachkonflikte werden wir nie loswerden. In der lb:Wiki sehe ich keine andere Möglichkeit als auf Racine in fr zu verlinken, da sonst die Velinkung auf die mathematischen Homonymiebegriffe verloren geht. Andernfall könnt man die fr.Wiki auffordern aufzuteilen, welches die beste Lösung wäre.

Les Meloures

Hallo, ich habe die Frage auf WD:WikiProjekt Begriffsklärungsseiten#Interwiki-Links angesprochen. Ich befürchte aber ebenfalls, daß es keine allgemeingültige Lösung gibt. Viele Grüße --ulm 13:37, 12. Jul. 2010 (CEST)Beantworten
Hallo,
Das glaube ich allerdings auch. Für die lb:Wiki passt auf jedenfall für den ersten französischen Teil

das Interwiki, wogegen das englische Wurzel (disambiguation)das Sie eingesetzt haben auf jedenfall auch nicht so richtig passt, da gehört m.M.n das englische Root (disambiguation), diese führt nämlich im ersten Teil auf die luxemburgische Erklärung. Dazu kommt noch dass die lb:eventuell eine Begriffserklärung Wurzel anlegen kann, welche wieder nur mit verschiedenen andern Begriffen aus der de: Begriffserklärung übereinstimmen würde. In der lb:haben wir schon angefangen aufzuteilen zwischen allgemeinen Homonymies und solchen für Personen mit gleichem Vor-und Familiennamen, und für solche wo nur der Familienname übereinstimmt, wobei bei den Allgemeinen auf die anderen higewiesen wird. Soweit ich herausgefunden habe führen die Franzosen das auch teilweise so. Leider nicht überall. Meiner Meinung läuft es darauf hinaus, dass man dazu falls solche Zwiste entstehen man eindeutig in der Begriffserklärung darauf hinweisen soll und die Seite für Bots sperren damit nicht immer wieder Interwikikonflikte auftauchen. Für andere Benutzer welche manuell vorgehen könnte man im Änderungsfenster einen versteckten Text einfügen mit den nötigen Erklärungen, damit nicht immer wieder Änderungen vorgenommen werden.

Les Meloures

Radioaktive Strahlung

Was ist daran schlimm, wenn ich "radioaktive Strahlung" sage, wenn doch unmissverständlich klar ist was ich damit meine ? --Zipferlak 23:33, 15. Jul. 2010 (CEST)Beantworten

Nicht schlimm, aber unpräziser Sprachgebrauch, denn die Strahlung selbst ist nicht radioaktiv. Und meistens kann stattdessen "ionisierende Strahlung" gesagt werden, was ebenso kurz ist. --ulm 23:51, 15. Jul. 2010 (CEST)Beantworten
Es geht mir um die Formulierung "sollte vermieden werden" im Artikel, die ich etwas schulmeisterlich finde. Ich versuche eine andere Formulierung. --Zipferlak 10:20, 16. Jul. 2010 (CEST)Beantworten

"Unbelegte Behauptung entfernt"

Hallo Ulm. Ich bin zwar kein Anhänger davon, noch mehr Spitzfindigkeiten in die diversen Artikel über den Einheitenkram zu bringen, aber dass jeder Akt einer Neudefinition die Möglichkeit bietet, gleich noch mehr zu ändern, ist nur eine logische Schlussfolgerung, keine "unbelegte Behauptung". Interessanter ist aber, ob es derzeit überhaupt Bestrebungen gibt, das Gramm zur SI-Basieinheit zu machen - das bezweifle ich. Im Abschnitt Zukünftige Entwicklungen kommen viele Konjunktive vor, wahrscheinlich lassen sich all diese Mutmaßungen durch Literaturstellen belegen. Die älteste, auch mit Literatur belegbare, vermutlich zu erwartende Änderung fehlt hier aber: Die Verbannung der Candela aus dem SI. --888344

Statt des Kilogramms das Gramm als Basiseinheit zu verwenden, käme der Einführung eines neuen Einheitensystems gleich, weil sich damit die Größe praktisch aller abgeleiteten Einheiten ändern würde. Und es ist keine logische Schlußfolgerung, daß es solche Pläne gibt, sondern (jedenfalls solange es nicht belegt ist) reine Spekulation, die nichts in dem Artikel zu suchen hat.
Was es tatsächlich einmal gab, waren Pläne, für das Kilogramm einen neuen Namen wie etwa Bes einzuführen. Das hat aber nichts mit der aktuell geplanten Neudefinition zu tun. Solche Pläne werden auch aktuell nicht verfolgt, siehe z. B. [1]: "... the prefix issue for the name of the kilogram had been previously decided by not recommending any change, realizing that this issue does not seem to cause problems, whereas changing the name would give rise to a great deal of confusion, even in everyday life." --ulm 09:20, 23. Jul. 2010 (CEST)Beantworten

Dankeschön. Vielleicht ist es Dir nicht aufgefallen - aber wir stimmen überein. // "weil sich damit die Größe praktisch aller abgeleiteten Einheiten ändern würde" ??? Auch mit dem Gramm als SI-Basisheit wäre g/L das, was es jetzt ist. --888344

Das schon, aber beispielsweise ist derzeit 1 Joule = 1 m2·kg·s−2. Mit der Basiseinheit Gramm wäre die abgeleitete SI-Einheit für die Energie aber 1 m2·g·s−2 = 0,001 J und man bräuchte dafür dann einen neuen Namen. --ulm 09:49, 23. Jul. 2010 (CEST)Beantworten

Das stimmt - man müsste sehr viele der prinzipiell unnötigen "besonderen Namen" aufgeben. --888344

Änderung beim Watt

Vom Standpunkt "SI pur" aus gesehen, braucht man weder Vorsätze, noch besondere Namen wie Joule oder Katal: Alle Informationen, die zur Begriffsbildung nötig sind, gehören zur Größenbezeichnung. Dieser Gundsatz wurde von den SI-Machern von Anfang an in Frage gestellt, weil man von vornherein vertraute Namen wie Coulomb und Volt nicht aufgeben wollte; die letzte Neuschöpfung ist nun das Katal. Auch "Doppelbelegungen" wie bei Hz und Bq kommen vor, mit denen man fast das Gegenteil des Grundsatzes ermöglicht: Ohne Nennung der Größe herrscht hier schon Klarheit darüber, was gemeint ist. Und so sind auch in der Technik das Watt und das Einheitenprodukt Volt mal Ampere und das Var für unterschiedliche Bedeutungen reserviert. Wärest Du auch bereit, 1 Hz = 1 Bq zu schreiben? Aber das =-Zeichen ist auch nicht immer das, was es sein sollte. --888344

Für die Einheiten gilt der Zusammenhang 1 W = 1 V · 1 A immer, das ergibt sich einfach aus der Definition des Volt und steht auch so in der Infobox. Auf den Unterschied zwischen Wirkleistung und Scheinleistung wird ja weiter unten im Abschnitt "Verwendung der Einheit Watt" eingegangen und auch auf die entsprechenden Artikel verwiesen. Das kann man meinetwegen dort noch ausbauen. Nur den einleitenden Abschnitt sollte man nicht mit Begriffen wie Phasenverschiebung überfrachten, deren Sinnzusammenhang an dieser Stelle gar nicht klar werden kann, ohne viel weiter auszuholen. Vielleicht wäre aber ein Link auf Elektrische Leistung nicht schlecht, also "In der Elektrotechnik gilt:" ersetzen durch "Für die elektrische Leistung gilt:"? --ulm 11:42, 28. Jul. 2010 (CEST)Beantworten

Wärest Du auch bereit, 1 Hz = 1 Bq zu schreiben? --888344

Das ist nicht falsch, da 1 Hz = 1 s−1 und 1 Bq = 1 s−1 und das Gleichheitszeichen transitiv ist. Klar ist aber, daß die Einheiten für Frequenz und Aktivität vorgesehen sind. Beim Watt gibt es eine solche Einschränkung auf spezielle Arten der Leistung nicht, es hat eher die Rolle der obigen s−1. --ulm 12:23, 28. Jul. 2010 (CEST)Beantworten

"Beim Watt gibt es eine solche Einschränkung auf spezielle Arten der Leistung nicht" - das stimmt nicht; allerdings erfüllt wohl für den Physiker nur die Wirkleistung, nicht aber die Blind- und Scheinleistung der Technik der Leistungsbegriff voll. --888344

Niemand will den Elektrotechnikern ihr Voltampere verbieten, das ändert aber an dem Zusammenhang W = V · A nichts. (Wenn das nicht gölte, müßte man konsequenterweise auch cos φ in der Einheit W/VA angeben, was ich noch nie gesehen habe.) Wie gesagt, im Abschnitt "Verwendung der Einheit Watt" sind all diese Zusammenhänge gut aufgehoben. In der Einleitung sollte man sich auf das Wesentliche beschränken. --ulm 13:59, 28. Jul. 2010 (CEST)Beantworten

"Zusammenhang W = V · A " Das ist natürlich unstrittig. Jedoch hatte der gestrichene Zusatz schon eine Daseinsberechtigung, die allerdings nicht auf die Einheiten, sondern auf die üblicherweise mit ihnen angegebenen Größen zielt. Wenn immer klar ist, welche Größe gemeint ist, kommt man auch ohne ausdrückliche Angabe der Einheit aus und kann Angaben wie esu oder emu nehmen, die ja nur das Einheitensystem angeben. --888344 19:55, 28. Jul. 2010 (CEST)Beantworten

Rassel

Hi, ein Rotlink in einer BKS ist kein Grund für Irrelevanz. Siehe WP:BKS: Einträge können auch Artikel zum Ziel haben, die noch nicht existieren. Der Mann hat einen Eintrag in en: und nl:, allein dort wird die Relevanz ersichtlich. Einen relevanten Eintrag zu entfernen und dann SLA zu stellen, halte ich für grenzwertig. Nichts für ungut und Grüße, --NiTen (Discworld) 10:31, 29. Jul. 2010 (CEST)Beantworten

Dieses Nachtreten ("grenzwertig") hättest Du Dir jetzt wirklich sparen können. Den Abschnitt in WP:BKS hatte ich mir vorher durchgelesen, und aus dem folgenden Absatz geht klar hervor, daß ein Rotlink-Eintrag erlaubt, aber nicht zwingend ist. Ob man es mit BKH oder separater BKS löst, ist hier reine Ermessenssache, weiter nichts. Immerhin hatten zwei Admins den SLA geprüft und für in Ordnung befunden. Nachdem es aber offenbar weitere Begriffe gibt, ist das Thema natürlich erledigt. --ulm 11:02, 29. Jul. 2010 (CEST)Beantworten

VIM

Kann man denn andererseites erwarten, dass in der internationalen Ausgabe alle nationalen Feinheiten abgehandelt werden? Unterstellt, dass es sie in diesem Falle objektiv gibt, was schwer nachzuweisen ist. --888344

Nein, aber in Anbetracht der Verwendung des Begriffs in der deutschsprachigen Literatur finde ich es vom Übersetzer ziemlich mutig, dessen Veraltung zu behaupten. --ulm 17:04, 2. Aug. 2010 (CEST)Beantworten

Oder deutlicher gesagt: Das DIN als Herausgeber der nationalen Übersetzung versucht hier, eine neue Empfehlung zu etablieren. (Trotzdem gibt es diese DIN-Empfehlung.) --888344

Die dem üblichen Sprachgebrauch aber zuwiderläuft. Sogar in der SI-Broschüre werden die Fachbegriffe "dimensionslosen Größe", "Größe ohne Dimension" und "Größe der Dimension 1" als Synonyme gebraucht, ohne einen Hinweis, daß die ersteren veraltet wären. Ich meine, daß das VIM besser in einer erweiterten Fußnote als in der Einleitung des Artikels genannt werden sollte. --ulm 12:12, 3. Aug. 2010 (CEST)Beantworten

Tja, ich weiss nicht so recht, was man von dieser deutschen SI-Broschüre halten soll. Sie ist stellenweise nicht grade präzise im Ausdruck, z. B.: "Das Angström ist im Bereich der Kristallographie mit Röntgenstrahlen und in der Strukturchemie noch weit verbreitet, da die Länge der chemischen Verbindungen im Bereich zwischen 1 und 3 Angström liegt." Oder kannst du mit der "Länge der chemischen Verbindungen" etwas anfangen? Auch in dieser deutschen SI-Broschüre wird in Fußnoten oft auf nationale Spezialitäten hingewiesen. --888344

Im englischen Original heißt es "all chemical bonds lie in the range 1 to 3 ångströms". Also eine Fehlübersetzung, es muß "Bindungen" heißen, nicht "Verbindungen". Gemeint ist hier die Bindungslänge. --ulm 13:25, 3. Aug. 2010 (CEST)Beantworten

NOCH wichtiger ist m. E. - nimmt man VIM und die Broschüre zusammen - ein ganz anderer Punkt: Wie kann man verständlich und OMA-tauglich erklären, dass im SI auch einige abgeleitete Größen (des ISQ) in SI-Basiseinheiten angegeben werden können? --888344

Norm und Standard

gudn tach!
zu [2]: die aenderung von "standard" in "norm" ist unnoetig, da auch "standard" bereits deutsch ist und eben die gewuenschte bedeutung besitzen kann. -- seth 00:09, 11. Aug. 2010 (CEST)Beantworten

Hm, ich habe es deshalb geändert, weil der Abschnitt dann auf konkrete Normen (DIN und ISO) Bezug nimmt. Ich habe in diesem konkreten Fall aber keine starke Meinung, und gegen einen Teilrevert nichts einzuwenden. --ulm 00:29, 11. Aug. 2010 (CEST)Beantworten
In Artikeln, die sich stärker auch mit formalen Aspekten befassen, und den zugehörigen Diskussionen wird die Auffassung vertreten, dass Normung und Standardisierung etwas Unterschiedliches sein soll. Der Meinung bin ich übrigens nicht, wollte es aber erwähnen. --888344

Weiterleitung überschreiben

Hallo Ulm. Wie hast Du es eigentlich geschafft, die Fotometrie mit der Photometrie zu vertauschen? Wenn ich eine ähnliche Aktion mit Distanzmessung und Entfernungsmessung mit dem Verschiebeknopf versuche, bekomme ich nur angesagt, dass ich einen anderen Zielnamen wählen möge.---<)kmk(>- 12:28, 12. Aug. 2010 (CEST)Beantworten

Wenn ich mich richtig erinnere, geht das Überschreiben einer Weiterleitung nur dann, wenn diese (also die Zielseite) eine leere Versionsgeschichte hat. --ulm 12:32, 12. Aug. 2010 (CEST)Beantworten

Infobox Wechselwirkung von Photonen mit Materie

Hallo Ulrich, hast du hierzu eine klare Meinung? Ich würde diese Diskussion gerne abschließen. Imho haben wir die zwei Alternativen:

  • "Kleine Lösung", also in etwa der ursprüngliche Vorschlag, ohne Rayleigh-Streuung. Die Begründung / Abgrenzung liefe auf ein (schwaches) "Schulbuchniveau"-Argument hinaus.
  • "Keine Lösung", d.h. wegen der Nicht-Abgrenzbarkeit gibt es keine Box.

Grüße, Kein Einstein 20:40, 12. Aug. 2010 (CEST)Beantworten

Ich kann mit beidem leben. ;-) In der Tat ist die Abgrenzung das Problem. Effekte wie Mie-Streuung und Frequenzverdopplung wird man aber los, wenn man sich auf hochenergetische Photonen (ab etwa 1 keV) beschränkt. Dann bleiben im wesentlichen Photoeffekt, Rayleigh- und Comptonstreuung und Paarbildung übrig. Die nuklearen Effekte tragen nicht nennenswert zum Gesamtwirkungsquerschnitt bei, einzig der Kernphotoeffekt (Dipolriesenresonanz) spielt bei schweren Kernen eine gewisse Rolle. Meine "kleine Lösung" würde also diese genannten Effekte (mit oder ohne Kernphotoeffekt) enthalten. --ulm 00:06, 13. Aug. 2010 (CEST)Beantworten

Infobox zu Einheiten

Hallo Ulm. Du hast wohl mehrfach in einer solchen Infobox als "Norm" eine EWG-Richtlinie angegeben. Das ist insofern irreführend, als "Norm" verlinkt ist, und der Link führt zum DIN. Warum gibts Du als Norm etwas an, das versucht, eine Vereinheitlichung, zwar nicht in Europa, aber innerhalb der EU-Staaten herbeizuführen? Man könnte ja auch überkontinentale Versuche anführen oder die national-rechtlichen Grundlagen der DACH-Länder. Die deutschsprachige Wikipedia hat ja auch die Verhältnisse in der Schweiz darzustellen. --888344

Siehe Diskussion in WP:RPQS#Einheitenartikel und Infobox Einheit. Die Beispiele in Vorlage:Infobox Einheit#Parameter sind übrigens sämtlich keine Normen; die Verlinkung auf DIN ist m. E. irreführend und sollte entfernt werden. --ulm 09:26, 17. Aug. 2010 (CEST)Beantworten
Der Begriff Norm hat noch andere Bedeutungen. Auch jedes Gesetz ist eine "Norm". Wenn überhaut, sollte der Link zur BKL-Seite Norm führen. Ein weniger missverständlicher Begriff wäre wohl besser. -- Pewa 12:32, 17. Aug. 2010 (CEST)Beantworten

"die Verlinkung auf DIN ist m. E. irreführend und sollte entfernt werden" dem stimme ich zu, evtl. auch "Norm" anders benennen. Dies Disk. ´zur Infobox hab ich bis jetzt noch nicht gelesen. --888344 Hab jetzt die Disk. gelesen. Es ändert nichts dran: Mit Nennung einer EWG-Richtline ignorieren wir die Interessen der schweizerischer Leser. --888344

Eventuell ist die Schweiz über den EWR hier mit im Boot. Daß die Schweizer Einheiten-Verordnung 1:1 mit der EG-Richtlinie übereinstimmt, deutet sehr darauf hin. Aber ich werde mich mal schlaumachen. --ulm 09:48, 17. Aug. 2010 (CEST)Beantworten
Auf die Schnelle habe ich das hier gefunden. --ulm 09:59, 17. Aug. 2010 (CEST)Beantworten

zur Übereinstimmung: In CH hat das Karat ein Einheitenzeichen, das Ar heißt etwas anders, es gibt weitere Abweichungen. Die genannte EWG-Richtlinie kann daher unmöglich eine "Norm" für CH sein. Von beeindruckender Klarheit ist m. E. übrigens der schweizerische Text: "Die Celsius-Temperatur ist gleich der entsprechenden thermodynamischen Temperatur in Kelvin abzüglich 273,15. Die Einheit Grad Celsius ist gleich der Einheit Kelvin"; er vermeidet bewusst formalisierte Schreibweisen. --888344

Bsp. für Einheiten,

... die man nicht durch SI-Einheiten ersetzen kann. Ich bin Dir noch Beispiele schuldig. 1.) der typographische Punkt: gemessen wird eigentlich mit einem Bleistab, auf dem 2 Kerben eingeritzt sind; deren Abstand in m ist temperaturabhängig. das war gewollt, denn es wurde damit ja dei Schriftgröße von Bleilettern ermittelt. 2.) Mach. Der Ersatz "Mach-Zahl" führt zu einer anderen begriffsbildung, allerdings ohne Informationsverlust. --888344

Mach ist nun definitiv keine Einheit, sondern wie auch die Reynolds-Zahl oder die Euler-Zahl eine dimensionslose Kenngröße. --ulm 11:28, 17. Aug. 2010 (CEST)Beantworten

Mach war früher eine Einheit - man hat ja Geschwindigkeiten als z. B. 0,73 Mach angegeben -, und weil das SI keinen Ersatz schaffen konnte, hat man die Machzahl erfunden. --888344 Die Mach-Zahl ist eine Größe der Dimension Zahl, das Mach hingegen war es nicht. --888344

Siehe z. B. hier. --ulm 12:52, 17. Aug. 2010 (CEST)Beantworten

Das ist eine Darstellung aus der Zeit, als die SI-Anhänger bereits die Machzahl erfunden und die frühere Macheinheit aufgegeben hatten. Tatsächlich fehlt uns derzeit noch die - von mir vorhin verwechselte - Mache-Einheit. --888344 (nicht signierter Beitrag von 888344 (Diskussion | Beiträge) 13:27, 17. Aug. 2010)

Die Mache-Einheit hat wohl nichts mit der Schallgeschwindigkeit zu tun. -- Pewa 13:54, 17. Aug. 2010 (CEST)Beantworten

Danke - deswegen hab ich "von mir vorhin verwechselte" geschrieben. --888344 Nach dem zitierten Lexikon wäre der Sprachgebrauch: Die Machzahl des Flugzeugs beträgt 0,73 Mach: Zumindest eine unschöne Dopplung. Tatsächlcih klingt hier aber an, dass das Mach früher etwas anderes war. --888344

Eine ausführliche Darstellung zu "Mach" und "Mach-Zahl" findet sich in Scholz/Vogelsang: Kleines Lexikon: Einheiten, Formelzeichen, Größen. Fachbuchverlag Leipzig, 1. Auflage 1991, ISBN 3-343-00500-2, Seite 242/243; sie weicht von der oben verlinkten stark ab. --888344

Amperewindung

In der sog. SI-Broschüre steht drin, dass die magnetische Durchflutung eine abgeleitete Größe mit der Basisdimension "elektrische Stromstärke" ist. Diese Broschüre scheint immer mehr Anhänger oder zumindest Leser zu finden. Dem ist es wohl zu verdanken, dass nun in Amperewindung als Dimensionsname "magnetische Durchflutung (magnetische Spannung)" angegeben ist. Ich schlage vor, den Eintrag "Dimensionsname" aus der Infobox generell zu verbannen. Der Zusatznutzen scheint mir geringer als der mögliche Schaden. Generell ist aber zu begrüßen, dass es gegenwärtig recht viele Wikipedianer gibt, die immer wieder neue Feinheiten in Artikel über Maßeinheiten, Einheitensysteme und den immer noch nicht richtig funktionierenden Größenkalkül bringen. --888344

PhysicalSize sollte wohl richtigerweise in "magnetische Durchflutung (magnetische Spannung)" und Dimension in "Stromstärke" geändert werden. --ulm 14:21, 17. Aug. 2010 (CEST)Beantworten

Literatureintrag im Artikel "CERN"

Hallo Ulm, ich bin ein neuer Autor bei Wikipedia. Gleich einer meiner ersten Einträge wurde am 13.August um 1:33 h wieder gelöscht. Ich kenne mich mit der Handhabung der Wiki Werkzeuge noch nicht so aus, vermute aber aus der Versionsgeschichte, dass du die Löschung vorgenommen hast. Falls ich damit richtig liege, wüsste ich gerne warum du das gemacht hast und mich dazu nicht vorher auf meiner Diskussionsseite kontaktiert hast? Du kannst dir vielleicht vorstellen, wie man sich fühlt, wenn einem gleich bei den ersten Gehversuchen in einem neuen Medium die Beine unter dem Hintern weggezogen werden? Dem dürftigen Kommentar in der Versionsgeschichte glaube ich entnehmen zu können, dass du die Relevanz des von mir eingebrachten Literaturtipps: Alexander Unzicker: Vom Urknall zum Durchknall: Die absurde Jagd nach der Weltformel. Springer, Heidelberg 2010, ISBN 3642048366. für den CERN Artikel verneinst. Meine Überlegung war dazu folgende: Wenn richtigerweise das Buch von Rolf Landua über die Sinnhaftigkeit der am CERN vertretenen Physik in das Literaturverzeichnis aufgenommen wurde, wäre es im Sinne von Ausgewogenheit angebracht, dass die Gegenposition, die in dem neuen Buch von Alexander Unzicker sehr lesenswert dargestellt wird, ebenfalls dort einen Platz findet. Bitte schreib mir mal, was daran falsch sein soll. --Gospieler 18:18, 18. Aug. 2010 (CEST)Beantworten

Hallo Gospieler, siehe WP:LIT #Auswahl. Insbesondere heißt es dort: "Die Pflicht, die Relevanz von Literaturhinweisen nachvollziehbar zu begründen, liegt bei dem, der sie im Artikel haben möchte." Das mindeste wäre hier eine Kurzbegründung im Bearbeitungskommentar gewesen, warum dieses Buch in das Literaturverzeichnis gehört; besser noch eine Begründung auf der Diskussionsseite des Artikels (das gilt übrigens auch jetzt noch, denn dort lesen sicherlich mehr Leute mit als hier). Bei einer kommentarlosen Einfügung, wie Du sie vorgenommen hattest, dazu noch bei diesem reißerischen Buchtitel, ist es bis zum Revert nicht weit. Viele Grüße, --ulm 18:42, 18. Aug. 2010 (CEST)Beantworten
OK, diese Literaturregel kannte ich nicht. Wo und wie kann ich bitte einen "Bearbeitungskommentar" anlegen? Meine bisherige Erfahrung mit Einträgen auf der Diskussionsseite eines Artikels gehen dahin, dass die keiner liest oder zumindest niemand darauf reagiert. Daher möchte ich es mal mit einem "Bearbeitungskommentar" versuchen. Viele Grüße --Gospieler 18:55, 19. Aug. 2010 (CEST)Beantworten
Siehe WP:ZQ, Bearbeitungskommentar = Zusammenfassung. --ulm 19:03, 19. Aug. 2010 (CEST)Beantworten

Dalton

würdest du bitte noch alle Links auf die Seite Dalton anpassen. Du hast es angerichtet, bitte nun auch auslöffeln. -- 83.76.69.68 00:15, 21. Aug. 2010 (CEST)Beantworten

Selbstverständlich. Wegen der Vielzahl der Links bitte ich aber um etwas Geduld. --ulm 00:33, 21. Aug. 2010 (CEST)Beantworten
Hmm... könntest Du auch gleich die veralteten "Daltons" in "u"s umwandeln, siehe Atomare Masseeinheit?--Mager 20:13, 21. Aug. 2010 (CEST)Beantworten
Jetzt, wo ich mit dem Umbiegen der Links fertig bin, noch einen zweiten Durchgang durch die 400 betroffenen Artikel? Nein danke. ;-) Abgesehen davon müßte so eine Änderung auch zuerst mit der Redaktion Chemie abgesprochen werden; in deren Richtlinien steht nämlich explizit, daß das Dalton im Bereich der (Bio-)Chemie-Artikel eine zulässige Einheit ist. Es bleibt auch abzuwarten, ob nicht die Bezeichnung Dalton in Zukunft sogar zum gesetzlich zulässigen Namen für diese Einheit wird. In die letzte Auflage der SI-Broschüre des BIPM wurde es bereits aufgenommen (siehe dazu 15th Meeting of the CCU, Abschnitt 4.16 auf S. 9f). --ulm 23:08, 21. Aug. 2010 (CEST)Beantworten
Erstmal Danke für die Info.--Mager 20:58, 22. Aug. 2010 (CEST)Beantworten

Bogensekunde

Behauptest du das nur oder kannst du es durch eine Quellenangabe belegen ? ÅñŧóñŜûŝî (Ð) 22:00, 4. Sep. 2010 (CEST)Beantworten

Siehe Bearbeitungskommentar. Oder auch hier: [3] [4] [5] [6] --ulm 22:07, 4. Sep. 2010 (CEST)Beantworten
Die Si-Broschüre sagt dazu auf Seite 24: "In der Astronomie werden kleine Winkel in Bogensekunden gemessen (d.h. in Winkelsekunden), in Milli-, Mikro- oder Pikobogensekunden (Zeichen jeweils as oder ″, mas, μas und pas). Die Bogensekunde ist ein anderer Name für die Winkelsekunde."
Das ganze ist leider nicht wirklich eindeutig, aber ich verstehe es so, dass Winkelsekunde der "vollständige Name" der Einheit ist und der Name Bogensekunde hauptsächlich in der Astronomie verwendet wird. Danach sind Sekunde, Winkelsekunde und Bogensekunde alles korrekte Namen der (Nicht-SI)-Einheit, wobei Bogensekunde auf die Astronomie beschränkt ist. Das Lemma müsste demnach Winkelsekunde lauten. Grüße -- Pewa 06:46, 5. Sep. 2010 (CEST)Beantworten
So steht es in der Fußnote d. In der Tabelle selbst heißt es aber einfach "Minute" und "Sekunde", ebenso in Fußnote b. Wegen der Zahl der Treffer in der Google-Büchersuche, nämlich Bogensekunde zu Winkelsekunde rund 10:1 und -minute rund 2:1, sollte man das Lemma aber so lassen. Sekunde (Winkel)/Sekunde (Winkeleinheit) wäre wohl korrekter, aber wegen des Klammerlemmas unschön. --ulm 10:37, 5. Sep. 2010 (CEST)Beantworten

Die Mehrheit ist nicht entscheidend, sondern die Richtigkeit. Daran gemessen ist für das Lemma "Winkelsekunde" optimal, denn es ist offiziell eine alternative Bezeichnung zu "Sekunde" und vermeidet ein unnötiges Klammerlemma. "Bogensekunde" ist aus dem engl. Sprachraum übernommen, da es die wörtliche Bedeutung der in den USA üblichen Bezeichnung "arcsec" ist. Die PTB benennt "Winkelsekunde" als alternative zu "Sekunde", besonders bei der Gefahr von Mehrdeutigkeit. ÅñŧóñŜûŝî (Ð) 10:54, 5. Sep. 2010 (CEST)Beantworten

Ich würde den Artikel nicht verschieben, denn Bogensekunde ist nicht falsch. Aber wenn Du es machen möchtest, habe ich keine Einwände. --ulm 11:44, 5. Sep. 2010 (CEST)Beantworten

Gut. Dann muss man Winkelminute ebenfalls anpassen. ÅñŧóñŜûŝî (Ð) 11:49, 5. Sep. 2010 (CEST)Beantworten

Ja. Aber bitte Grad (Winkel) dort lassen. "Winkelgrad" kommt in den einschlägigen Normen nämlich nicht vor. --ulm 11:53, 5. Sep. 2010 (CEST)Beantworten
Selbstverständlich. ÅñŧóñŜûŝî (Ð) 11:57, 5. Sep. 2010 (CEST)Beantworten

Hallo
Hm, durch das ganze Hin und Her wird der Artikel ja nun nicht wirklich besser.
Wo wird denn bitteschön "as" verwendet? Beleg?
Herzliche Grüsse -- 183.91.87.16 21:42, 5. Sep. 2010 (CEST)Beantworten

"as" für die Winkelsekunde wird beispielsweise in der SI-Broschüre der PTB genannt. --ulm 00:01, 6. Sep. 2010 (CEST)Beantworten
Ja, SI-Broschüre, ok. Das ist aber nicht besonders interessant. Wo wird diese Einheit wirklich verwendet. Bitte gib ein Beispiel für die Verwendung an oder noch besser eine Quelle, welche die Verwendung darlegt. (Bei der Astrophysik musst Du jedenfalls schon mal nicht suchen gehen, da verwendet das niemand.) -- 183.91.87.16 00:56, 6. Sep. 2010 (CEST)Beantworten
Verwendung z. B. hier: [7], [8], [9] --ulm 03:26, 6. Sep. 2010 (CEST)Beantworten
Ok, danke. Strub, aber tatsächlich ein Nachweis der Verwendung. -- 183.91.87.16 03:39, 6. Sep. 2010 (CEST)Beantworten

@Antonsusi: Daß "Winkelsekunde" ein geeignetes Lemma für den Artikel ist, impliziert nicht, daß auch die Ausdrücke "Milliwinkelsekunde" oder "Mikrowinkelsekunde" verwendet werden. Dezimale Vorsätze werden meines Wissens ausschließlich von den Astronomen und in Zusammensetzung mit "Bogensekunde" verwendet. --ulm 00:12, 6. Sep. 2010 (CEST)Beantworten

Das ergibt sich ganz einfach aus der Tatsache, dass "Winkelsekunde" eine offiziell erlaubte Bezeichnung ist und Milli bzw. Mikro SI-Präfixe sind. ob diese Einheit gebräuchlich oder exotisch ist, ist m.E. sekundär. Auch Gigafarad ist eine zulässige SI-Einheit, obwohl es kaum derartig große Kondensatoren / Kapazitäten geben dürfte. ÅñŧóñŜûŝî (Ð) 00:16, 6. Sep. 2010 (CEST)Beantworten
Eben gerade nicht, da beispielsweise die Einheitenverordnung oder die EG-Einheitenrichtlinie die Verwendung von dezimalen Vorsätzen bei der Winkelsekunde explizit ausschließen. Und der Vergleich mit dem Farad hinkt, da Milli- und Mikrobogensekunden vorkommen, aber nur so (und nicht als -winkelsekunde) bezeichnet werden. --ulm 00:25, 6. Sep. 2010 (CEST)Beantworten
Was irgendwelche Verordnungen von irgendwelchen Politikern / Juristen sagen, interessiert herzlich wenig. Zum Zwecke der Erstellung einer Enzyklopädie und im Interesse des Lesers stellen wir hier die Tatsachen dar und keine Wunschvorstellungen. "Milliwinkelsekunden" oder "Mikrowinkelsekunden" gibt es einfach nicht. Niemand verwendet das und deshalb haben diese Begriffe auch nichts in einem Artikel verloren. -- 183.91.87.16 00:56, 6. Sep. 2010 (CEST)Beantworten
Wo habe ich bitte geschrieben, daß diese beiden Bezeichnungen in den Artikel sollen? --ulm 03:31, 6. Sep. 2010 (CEST)Beantworten
Nirgends. Der Kommentar war mehr dazu gedacht, die Argumentation von Antonsusi unabhängig von Verordnungen und EG-Richtlinien zu entkräften. Das finde ich nämlich alles andere als überzeugend. Gerade von einem Wissenschaftler mutet das seltsam an. Die drei Links, die Du oben zusammengestellt hast, haben für mich deutlich mehr Gewicht als 50 solche Verordnungen. -- 183.91.87.16 03:39, 6. Sep. 2010 (CEST)Beantworten
Solche Normen entstehen ja nicht im luftleeren Raum, sondern spiegeln im wesentlichen einen Konsens über die tatsächliche oder zumindest angestrebte Verwendung der Maßeinheiten wider. Und die Komitees im BIPM usw. sind nicht mit Politikern, sondern mit Wissenschaftlern besetzt. Insofern ist eine Erwähnung z. B. in der SI-Broschüre schon ein starkes Indiz für den tatsächlichen Gebrauch. Daß es Ausnahmen gibt, ist natürlich unbestritten; diese muß man aber von Fall zu Fall klären. (Beispielsweise steht das Elektronenvolt wegen des weit überwiegenden Gebrauchs unter eben diesem Lemma, obwohl es in den Normen "Elektronvolt" heißt.) --ulm 10:43, 6. Sep. 2010 (CEST)Beantworten
Schön und gut, wenn Du diese Differenzierung machen kannst. Du weisst aber vermutlich genauso gut wie ich (und wir sehen es ja hier), dass es leider genügend Leute gibt, welche stur nach solchen Normen vorgehen und dann massenhaft "Verbesserungen" in den Artikeln vornehmen. Ich warte nur drauf bis irgendwer einen Botlauf vorschlägt (oder gleich mal startet), der überall Bogensekunde durch Winkelsekunde ersetzt. Was irgendwo genormt ist oder angestrebt wird, ist unerheblich. Es soll hier der gängige Gebrauch dargestellt werden. Wikipedia ist nicht dazu da, die Umsetzung oder Einhalten von Normen zu befördern. (Die Einheit "as" zum Beispiel ist exotisch. Alle Welt verwendet arcsec oder ". Ich würde das sofort revertieren, wenn das irgendwo so geändert wird.) -- 183.91.87.16 15:43, 8. Sep. 2010 (CEST)Beantworten
Und was ist dann mit den Milli-, Mikro- oder Piko-as, mas, μas und pas?. -- Pewa 17:02, 8. Sep. 2010 (CEST)Beantworten
Ich verstehe es so (nenne es meine TF wenn Du willst), daß für die Sekunden in der Regel das Sekundenzeichen ″ verwendet wird. Für die dezimalen Teile kann man dieses aber nicht gut mit Präfixen versehen (wie in m″), weshalb in diesem Fall auf mas usw. ausgewichen wird. Das Kürzel as ohne Präfix ist daher eher selten. Warum die Astronomen diese inkonsequente Mischung aus sexagesimaler und dezimaler Teilung bevorzugen, statt einfach µrad und nrad zu verwenden, ist mir im übrigen ein Rätsel. --ulm 17:16, 8. Sep. 2010 (CEST)Beantworten
Genau, für Sekunden normalerweise arcsec oder " (über dem Dezimalkomma), für Kleineres mas oder μas. Ungebräuchlich ist "pas" (einfach zu klein zum Messen).
Tja, wieso machen die Astronomen das nun so? Hauptsächlich aus historischen Gründen. Auf Messgeräten gab (und gibt) es nun mal keine Skalen in rad. Würde man auf rad umstellen, könnte man zudem das Parsec als Längeneinheit auch gleich mitentsorgen. Die Umstellungskosten sind gegenüber dem Nutzen einfach viel zu gross. Die Wahl ist ausserdem keineswegs inkonsequent, ich wüsste nicht weshalb. -- 183.91.87.16 17:31, 8. Sep. 2010 (CEST)Beantworten
Wenn man "mas" und "μas" nicht nur als "Astronomenslang", sondern als physikalische Einheit bewertet, kommt man unvermeidlich zu dem Ergebnis, dass ein "mas" ein tausendstel as und ein "μas" ein millionstel as ist. Beides sind also Bruchteile die durch einen Präfix aus der Einheit "as" = "arcsec" = "Bogensekunde" gebildet werden.
Dass die Einheit "as" ohne Präfix genauso ungebräuchlich ist wie die Einheit "Bel" ohne "dezi-" spielt dabei keine Rolle. Eine Definition von Dezibel geht nicht ohne Bel und eine Definition von mas und μas geht nicht ohne as. -- Pewa 18:03, 8. Sep. 2010 (CEST)Beantworten
Du setzst hier voraus, dass es a priori eine Einheit "as" gab, von der dann "mas" und "μas" abgeleitet wurden. Das müsste man jetzt recherchieren. Ich halte es für gut möglich, dass dies falsch ist und dass zuerst die Einheiten "mas" und "μas" waren (als "Astronomenslang" als Verkürzung aus micro arc second) und sich dann später mal ein Normierungsfreak noch das "as" als Grundeinheit dazu erfunden hat (wobei eine solche formale Definition für die Praxis natürlich völlig unnötig ist; "mas" und "μas" können auch gänzlich unabhängig von "as" existieren, die Grundeinheit dazu heisst einfach arcsec, ist aber nicht so schlimm). Könnte man mal recherchieren, wär noch interessant (vermutlich sagt irgendeine IAU-Kommission auch etwas dazu). Relevant ist es aber nicht, da "as" wie gesagt nicht verwendet wird. -- 183.91.87.16 18:34, 8. Sep. 2010 (CEST)Beantworten

Dimensionslose Größe

Kannst du das Beispiel mit Lichtstrom und Lichtstärke einfügen ? Mein Beispiel mit Arbeit und Drehmoment ist schwierig zu erklären, obwohl es im physik. Alltag besonders häufig vorkommt. Daher würde ich es begrüßen, wenn beide Beispiele im Artikel enthalten wären. Ich habe auf Diskussion:Dimensionslose Größe dargestellt, was ich ausdrücken möchte. Kannst du mal schauen, ob du dass sprachlich besser unterbringst ? ÅñŧóñŜûŝî (Ð) 22:06, 5. Sep. 2010 (CEST)Beantworten

Frequenzspektrum

Begründe bitte, warum du in dieser Vandalismusmeldung verlangst, dass der Artikel auf eine fachlich falsche Version zurückgesetzt werden soll. Die Version von Ende Juli ist fachlich unhaltbar, steht im Widerspruch zu allen Definitionen der Fachliteratur, und verstoßt gegen WP:WSIGA, WP:NPOV und WP:TF, indem sie versucht in der Einleitung des Artikels eine Fehlverwendung einss Fachbegriffs als eine Grundbedeutung des Begriffs zu etablieren. Bitte begründe deine Forderung und gibt deine Belege dafür an, dass "Frequenzgang" eine Grundbedeutung von "Frequenzspektrum" ist. Siehe Aufforderung in der VM. -- Pewa 01:10, 10. Sep. 2010 (CEST)Beantworten

Beachte das Wörtchen "wahlweise", außerdem hat der Admin den Artikel ja in der "richtigen Version" gesperrt. Ansonsten wird das Thema inhaltlich schon an genügend vielen (zu vielen?) Stellen diskutiert, so daß es sicher nicht zielführend ist, hier einen weiteren Diskussionsfaden aufzumachen. Deshalb EOD hier. --ulm 08:22, 10. Sep. 2010 (CEST) Im übrigen habe ich mich hier schon zum Thema geäußert. --ulm 11:03, 10. Sep. 2010 (CEST)Beantworten

Was ist falsch daran...

...auch anderen Quellen zu folgen und die Einheit zusätzlich in einer Form anzugeben, die sofort erkennen lässt, dass das Gravitationsgesetz eine Kraft ergibt [10]? Die Frage ob eine ältere Version auch nicht falsch ist, ist kein ausreichender Grund für einen Revert. -- Pewa 23:36, 25. Sep. 2010 (CEST)Beantworten

Von mir aus kann der Wert auch (ausschließlich) in N·m2kg−2 angegeben werden, da habe ich keine besonderen Vorlieben. Aber willst Du der vollkommen trivialen Umrechnung der Einheiten wirklich eine Gleichung auf einer eigenen Zeile einräumen? Bei der elektrischen Feldkonstanten, wo die Zusammenhänge komplizierter sind, halte ich das gerade noch für gerechtfertigt, aber bei der Gravitationskonstanten wäre es zuviel des Guten. --ulm 00:13, 26. Sep. 2010 (CEST)Beantworten
WP ist nicht PRL und wendet sich überwiegend an Laien für die Einheitenumrechnungen keine trivialen Kopfrechenaufgaben sind. Die en.wp widmet der Darstellung dieser Konstante in unterschiedlichen Einheiten noch sehr viel mehr Raum. Was hast du dagegen in einem Artikel einzuwenden, der ausschließlich diese Konstante behandelt? Möchtest du vielleicht auch den Geschichtsabschnitt löschen, weil er aus heutiger Sicht vollkommen trivial ist und zu viele Zeilen verbraucht? WP darf mehr Information enthalten als die CODATA-Liste, und selbst die gibt bei diversen Konstanten neben den Basiseinheiten verschiedene triviale Umrechnungen an. -- Pewa 01:40, 26. Sep. 2010 (CEST)Beantworten
In enwiki ist die Größe auch in Einheiten angegeben, in denen sich eine andere Maßzahl ergibt, beispielsweise in den von Dir so geliebten CGS-Einheiten cm3g−1s−2. Das könnten wir natürlich auch so machen. Über das CGS möchte ich mich nicht streiten, aber in Einheiten ħc(GeV/c2)−2 und pc·M−1(km/s)2 wäre es sinnvoll. --ulm 10:01, 26. Sep. 2010 (CEST)Beantworten
Prima, dann hast du ja sicher auch nichts gegen eine Angabe der beiden nützlichsten Varianten in SI-Einheiten, die in der en.wp sogar mehrfach verwendet werden, so wie auch es auch hier in vielen Artikeln gehandhabt wird, z.B. hier: Elektrische Kapazität. -- Pewa 13:19, 26. Sep. 2010 (CEST)Beantworten
Ja, in der Kurzform von Benutzer:Kein Einstein ist es in Ordnung. Aber bitte kein unnötiges Geschwurbel. --ulm 14:15, 26. Sep. 2010 (CEST)Beantworten
Erst stimmst du hier einer Form wie der en.wp zu und jetzt bezeichnest du eine vergleichbare Formulierung als "unnötiges Geschwurbel" und revertierst sie ohne Begründung und ohne auf die Begründung zu antworten. Belege bitte, dass die von dir als besser bezeichnete Version einer Größenangabe, die die Abkürzung "bzw." enthält, zulässig und üblich ist. -- Pewa 15:28, 26. Sep. 2010 (CEST) PS: Lehnst du eine mathematisch korrekte Formulierung noch immer ab, weil sie eine zusätzliche Zeile benötigt? -- Pewa 15:36, 26. Sep. 2010 (CEST)Beantworten
Ist es so ausführlich genug? --ulm 18:57, 26. Sep. 2010 (CEST)Beantworten
Nein, da du es nicht einmal für nötig hältst zu beschreiben welche natürlichen Einheiten das sein sollen (vermutlich "unnötiges Geschwurbel"?) und keine überprüfbare Quelle angibst. Möchtest du den Artikel jetzt aus Trotz noch mit weiteren für G nutzlosen Einheiten zumüllen, weil du den Nutzen einer zweiten Version der SI-Einheit nicht auf Anhieb verstanden hast und nicht einmal bereit warst dafür eine weitere Zeile zu "opfern"? -- Pewa 21:14, 26. Sep. 2010 (CEST)Beantworten
Wenn Du CODATA 2006 für "keine überprüfbare Quelle" hältst, kann ich Dir wirklich nicht helfen. Am besten solltest Du dann dem NIST schreiben, daß sie diese Angabe in "für G nutzlosen Einheiten" entfernen sollen. Der PDG am besten gleich auch. --ulm 21:38, 26. Sep. 2010 (CEST)Beantworten
Ja, sehr witzig. Das ist keine Quelle für "G in natürlichen Einheiten" (welche "natürlichen Einheiten"?). Das ist eine Quelle für den Wert von G/hc. In Plankeinheiten ist beispielsweise G=1. Wenn du keine Quelle für diesen Wert von G "in natürlichen Einheiten" angeben kannst und nicht angeben kannst welche "natürlichen Einheiten" das sein sollen, werde ich das löschen. -- Pewa 21:58, 26. Sep. 2010 (CEST)Beantworten

Bei der Messung der Gravitationskonstanten sind beide Kugeln exakt bekannte Testmassen. Bei der Messung der Gravitationsfeldstärke benötigt man nur eine Testmasse (Probekörper), um die Gravitationsfeldstärke einer unbekannten Masse zu messen. -- Pewa 07:49, 27. Sep. 2010 (CEST)Beantworten

Danach wird aber der Begriff "Testmasse" (besser durch "Probemasse" ersetzen?) nur für die kleinen Kugeln verwendet, für die die Anziehung durch die großen Kugeln mit der durch die Erde verglichen wird. Jedenfalls ist der Absatz mindestens so gut verständlich, wenn es im ersten Satz nur "bekannte Massen" heißt.
Wenn wir aber schon dabei sind: Formulierungen wie "Gravitationskraft zwischen Massen" oder "Gewicht seiner Testmasse m" sind keine saubere Ausdrucksweise. "Eine Kraft wirkt nicht auf eine Masse (Eigenschaft!) sondern auf den Körper." (Walcher, Praktikum der Physik). --ulm 08:26, 27. Sep. 2010 (CEST)Beantworten
Oft werden die gro0en ruhend (um)gelagerten Testmassen als Quell- oder Feldmassen bezeichnet und die kleinen beweglich gelagerten als Probe- oder einfach Testmassen. Der Unterschied ist nur die Position in Messanordnung , aber nicht ihre Bedeutung für das Ergebnis der Messung. Nicht nur die Massen beider Testkörper müssen exakt bekannt sein, sondern auch ihre Geometrie. Ich fand jedenfalls deine Begründung falsch, weil die Anforderungen an beide Testkörper genau gleich sind.
Eine beliebige Kraft wirkt auf einen beliebigen Körper, das ist richtig. Eine Gravitationskraft wirkt nur auf die Eigenschaft Masse eines Körpers, oder kurz auf die Masse. Dass Masse nur als Eigenschaft eines Körpers auftritt, muss man nicht jedesmal dazu sagen, oder möchtest du überall Masse durch Masse eines Körpers und Gewicht einer Masse durch Gewicht der Masse eines Körpers ersetzen? Ich habe nicht den Eindruck, dass die Ausdrucksweise sauberer oder klarer wird, wenn man Banalitäten in jedem Satz wiederholt. -- Pewa 10:31, 27. Sep. 2010 (CEST)Beantworten
Eben gerade nicht "Gewicht der Masse eines Körpers", sondern "Gewicht(skraft) eines Körpers". Eine Kraft wirkt nicht auf eine Eigenschaft, das ist semantisch unsinnig. --ulm 12:19, 27. Sep. 2010 (CEST)Beantworten
Auf einen Körper ohne Masse wirkt das Gravitationsfeld gar nicht. Ein Gravitationsfeld wirkt aber auch auf eine punktförmige Masse, die mangels räumlicher Ausdehnung gar kein Körper ist. Masse ist ein theoretisches Konzept einer physikalischen Größe. Das Gravitationsfeld wirkt auf diese Größe, genau so wie ein elektrisches Feld auf eine elektrische Ladung wirkt. Wenn du bei jeder Erwähnung einer physikalischen Größe "Ein Körper mit folgender Eigenschaft..." ergänzen willst, wäre das wohl "unnötiges Geschwurbel". -- Pewa 13:34, 27. Sep. 2010 (CEST)Beantworten

Zentrifugalkraft

Hallo Ulm, du hast im Artikel einen falschen Satz von Eulenspiegel1 [11] wieder eingefügt. Auf der Artikeldisk gibt es dazu eine lange Diskussion, an der du dich mit keinem Wort beteiligt hast. Bitte begründe auf der Artikeldisk, warum du der Meinung von Eulenspiegel bist, dass die Zentripetalkraft einer rotierenden Masse in allen Bezugssystemen gleich gemessen wird und die Zentrifugalkraft unterschiedlich. Beachte dabei bitte, dass man entgegen der Auffassung von Eulenspiegel1 Messungen in unterschiedlichen BS nicht vergleichen kann ohne sie in das jeweils andere BS zu transformieren. -- Pewa 12:59, 8. Okt. 2010 (CEST)Beantworten

Benutzer:Eulenspiegel1 hat den physikalischen Sachverhalt doch umfassend auf der Artikeldiskussionsseite dargestellt. Was davon hast Du nicht verstanden? --ulm 14:50, 8. Okt. 2010 (CEST)Beantworten
Du hast die Diskussion gelesen und meinst dass die Begründung: "Bei einem Objekt, das eine Beschleunigung besitzt, ist die Summe aller Kräfte ungleich Null. (.)" korrekt ist, als Teil einer "umfassenden Darstellung des physikalischen Sachverhalts"? Machst du Witze?
Welchen Teil von dem was ich geschrieben habe hast du nicht verstanden? Findest du deine Art von Blindreverts mit Nullargumenten, ohne dich im geringsten erkennbar mit den Argumenten zu befassen besonders witzig oder besonders 'cool'? -- Pewa 15:46, 8. Okt. 2010 (CEST)Beantworten
Was soll an "Bei einem Objekt, das eine Beschleunigung besitzt, ist die Summe aller Kräfte ungleich Null." nicht richtig sein? Das folgt direkt aus dem Zweiten Newtonschen Gesetz. --ulm 16:08, 8. Okt. 2010 (CEST)Beantworten
Ich glaub jetzt nicht, dass du noch nichts von der Trägheitskraft gehört hast (z.B. bei Newton), die bei einer beschleunigten trägen Masse entgegengesetzt gleich groß zur Beschleunigungskraft ist. Die kannst du selbst mit einer Federwaage messen. -- Pewa 16:20, 8. Okt. 2010 (CEST)Beantworten
Pewa, das ist leider wieder Dein penetrantes Falschverstehen. Die Trägheitskräfte treten in beschleunigten Bezugssystemen auf, zum Beispiel dem, das sich mit der beschleunigten Masse mitbewegt. In diesem Bezugssystem ist null und die Summe der Kräfte (inklusive der Trägheitskraft) dann auch null. In einem Inertialsystem sind und ebenfalls gleich aber halt nicht Null. --Pjacobi 16:21, 9. Okt. 2010 (CEST)Beantworten
Pjacobi, ich finde deine persönlich herabsetzende Einleitung penetrant, dadurch wird das was du hier schreibst nicht richtiger. Erstens hat Newton Trägheitskräfte bereits ohne beschleunigte Bezugssysteme korrekt beschrieben, soweit man die ART vernachlässigen kann. Zweitens ist es falsch, dass in einem mit beschleunigten Bezugssystem die Beschleunigung gleich Null ist. Im Gegenteil wirkt - der ART zufolge und ganz praktisch messbar - auf alle Massen in diesem Bezugssystem die Beschleunigung . Und drittens ist die Behauptung: "Bei einem Objekt, das eine Beschleunigung besitzt, ist die Summe aller Kräfte ungleich Null." immer noch schlicht falsch. -- Pewa 20:32, 9. Okt. 2010 (CEST)Beantworten
Überprüfe bitte Deine Ansicht durch Lesen einschlägiger Literatur. Zum Beispiel Online beim NASA-Physikkurs: http://www-istp.gsfc.nasa.gov/stargaze/Sframes2.htm --Pjacobi 20:59, 9. Okt. 2010 (CEST)Beantworten
Willst du damit sagen, dass einer der drei Punkte falsch ist und wenn ja, welcher und warum? Ich empfehle dir die Literatur, die ich unten auch Ulm empfohlen habe und richte die Bitte in dem letzten Satz dieser Antwort auch an dich. -- Pewa 12:18, 10. Okt. 2010 (CEST)Beantworten

@Pewa: So kann es nicht weitergehen. Wenn Du einen physikalischen Sachverhalt schon nicht verstehst, solltest Du wenigstens nicht stets das letzte Wort haben wollen. Sowohl Dein Diskussionsverhalten als auch die Tatsache, daß man Deinen Edits immerfort hinterherräumen muß, bindet in nicht unerheblichem Maße die Ressourcen der Redaktion Physik, die an anderer Stelle besser eingesetzt werden könnten. --ulm 21:49, 9. Okt. 2010 (CEST)Beantworten

+1. Kein Einstein 21:57, 9. Okt. 2010 (CEST)Beantworten
Was gar nicht geht ist, dass du hier verleumderische unwahre Behauptungen aufstellst. Was auch nicht geht ist, dass du - wenn überhaupt - auf der Methaebene oder der persönlichen Ebene argumentierst und es auch noch kritisierst, wenn andere sachlich argumentieren, oder wenn du unsinnige Behauptungen für sakrosankt erklärst.
Oben behauptest du, dass aus dem zweite Newtonschen Axiom folgt, das die Summe der Kräfte ungleich 0 ist, dass also das dritte Newtonsche Axiom falsch ist, das da lautet:
3. Axiom: Der Kraft, mit der die Umgebung auf einen Massenpunkt wirkt, entspricht stets eine gleich große, entgegengesetzte Kraft, mit der der Massenpunkt auf seine Umgebung wirkt. Factio = Freactio [12].
Das bedeutet, dass die Summe aller Zwangskräfte, Trägheitskräft und Gravitationskräfte gleich Null ist (Was in WP leider falsch dargestellt wird, aber das ist ein anderes Thema). Das ergibt sich auch aus dem Lagrange-Formalismus und dem D’Alembertsches Prinzip. Dabei sollte man auch das Transformationsverhalten von Zwangskräften beachten, das offenbar gerne ignoriert wird oder unbekannt ist. Und jetzt möchte ich dich bitten dein Verständnis dieser grundlegenden physikalischen Sachverhalte zu überprüfen. -- Pewa 12:10, 10. Okt. 2010 (CEST)Beantworten
Wenn Du schon meinst hier die lex tertia zitieren zu müssen, dann bitte richtig: "Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi." Da geht es um zwei Körper, die Kräfte aufeinander ausüben, nicht um die Kräftebilanz bei einem einzigen Körper. --ulm 13:42, 10. Okt. 2010 (CEST)Beantworten
Du hast behauptet, dass die zitierte Formulierung von Fließbach falsch ist, oder etwa nicht? Sicher kannst du dafür ein paar Quellen mit gleicher Autorität angeben? -- Pewa 19:56, 10. Okt. 2010 (CEST)Beantworten
Kläre das bitte mit Professor Torsten Fließbach, ob er die Newtonschen Axiome nicht verstanden hat: „Mechanik, Lehrbuch zur Theoretischen Physik I“ von Torsten Fließbach, Seite 11. Ich schätze Fließbach und seine Bücher sehr und gehe davon aus, dass er Newton richtig zitiert. -- Pewa 14:53, 10. Okt. 2010 (CEST)Beantworten
Pewa, du meinst wirklich aus dem 3. Newtonschen Gesetz ableiten zu können, dass die Summe aller am Körper A angreifenden Kräfte (nicht: Die Summe aller auftretenden Kräfte an allen irgendwie beteiligten Körper) stets Null sein muss und daher nicht auftreten kann? Das ist nicht so und das behauptet Fließbach auch nicht. Wie ulm sagt, es geht um zwei Körper, die Kräfte aufeinander ausüben (der zweite Körper wird von Fließbach "Umgebung" genannt). Lies doch mal im Tipler (Seite 92f). Mir scheint, beim doppelten Kräftegleichgewicht der Abb. 4.19 ersetzt du beim freien Fall des Körpers das Fn des Tisches durch eine ansonsten gleichartige "Trägheitskraft"? Viel Freude beim Bearbeiten von Beispiel 4.10 (Seite 93). Wenn du tatsächlich diesem Irrtum unterliegst, wirst du sicher dazulernen. Vielleicht verstehe ich dich (wie alle anderen hier) auch nur nicht. Kein Einstein 15:28, 10. Okt. 2010 (CEST)Beantworten
Das Zitat ist wie gesagt nicht von mir, sondern von Fließbach. Es ist doch ganz klar, was Fließbach schreibt: Es geht um einen Körper (Massenpunkt) auf den eine äußere Kraft wirkt, und der Körper wirkt mit derselben Kraft zurück. Der Körper selbst wirkt mit dieser Kraft, über deren Ursache für die Allgemeingültigkeit nichts gesagt werden muss - wenn das nicht so wäre, wären Gravitations- und Trägheitskräfte ausgeschlossen. Natürlich sind es immer mindestens zwei Körper, die eine Kraft aufeinander ausüben, was denn sonst, das ist trivial. Wenn mehr als zwei Körper beteiligt sind, gilt das natürlich für die Summe der Kräfte, die aus der Umgebung auf den Körper einwirken, das ist auch trivial. In der Formulierung von Fließbach ist doch ganz klar, dass das dritte Axiom für jeden einzelnen Körper (Massenpunkt) gilt, unabhängig von der Anzahl der Körper und ihrem Bewegungszustand. Nur so kann das 3. Axiom die allgemeine Gültigkeit haben, die es tatsächlich hat (für v<<c). Genau das ist z.B. auch die Grundlage des D’Alembertsches Prinzips. Fließbach hat auch ein sehr präzises Buch über die ART mit allen ihren Konsequenzen geschrieben. Du kannst davon ausgehen, dass Fließbach sich sehr präzise und allgemeingültig ausdrücken kann und dass er ganz genau das meint, was er schreibt. -- Pewa 16:24, 10. Okt. 2010 (CEST)Beantworten
Wir reden immer noch aneinander vorbei. Fließbach, ich, ulm, ... sagen, die zurückwirkende Kraft wirkt am anderen Körper. F12 und F21 können gar nicht Null ergeben, da sie verschiedene Angriffspunkte haben. Achte auf Abb. 2.1 (rechts) bei Fließbach. Ich stimme ja mit Fließbach überein - aber eben nicht mit deiner falschen Lesart.
Nochmal: Verstehe ich dich mit meinem ersten Satz oben „Pewa, du meinst wirklich...“ oben richtig? Kein Einstein 16:40, 10. Okt. 2010 (CEST)Beantworten
Willst du jetzt noch die Regeln der Grundrechenarten Addition und Subtraktion bestreiten? Es gilt F12 = - F21. Damit gilt spätestens seit Adam Riese: F12 + F21 = 0. Das ist die Aussage des 3. Axioms und das gilt für jeden einzelnen der zwei Massenpunkte und genau das sagt Fließbach und du behauptest das Gegenteil. Ich verstehe nicht wie du da etwas anderes reininterpretieren kannst. Außerdem behauptet Ulm, dass Fließbach das 3. Axiom nicht verstanden hat, während du offenbar Newton und Fließbach nicht verstanden hast.
Und nein, was du oben geschrieben hast, habe ich nirgends gesagt. Ich meine genau das was Fleißbach schreibt: Es geht nicht um die Summe der Kräfte, die am Körper (von außen?) "angreifen", sondern ganz präzise, wie Fließbach schreibt, um die Kraft, die von außen auf den Körper wirkt und die Kraft mit der der Körper nach außen wirkt. Das kann auch eine Gravitations- oder Trägheitskraft sein. Anders hatte Newton das Kräftegleichgewicht eines beschleunigten Körpers oder eines Körpers der in einem Gravitationsfeld ruht, gar nicht erklären können. Dabei solltest du auch das zweite Axiom beachten. -- Pewa 17:42, 10. Okt. 2010 (CEST)Beantworten
Ich habe nie behauptet, daß Fließbach die lex tertia nicht verstanden hätte. Wie käme ich denn dazu? Seine Wortwahl "ein Massenpunkt und seine Umgebung" halte ich aber für schwerer verständlich als die "zwei Körper" bei Newton. --ulm 18:12, 10. Okt. 2010 (CEST)Beantworten
@Pewa: Du hast die Anwendung der Vektorrechnung in der Physik nicht verstanden. Eine schlichte Addition von Kräften, die nicht am gleichen Angriffspunkt wirken, ist hier sinnlos. Nicht umsonst wird bei solchen Additionen „die im selben Punkt angreifen“ vorausgesetzt.
Du hast Abb. 2.1 (rechts) bei Fließbach nicht angeschaut oder wegen deiner Interpretation von Adam Riese nicht verstanden.
Du hast folgerichtig auch den Tipler nicht verstanden. Dabei geht er doch ausführlich darauf ein, dass dieses Kräftepaar nie am gleichen Körper angreifen kann. Nach deiner Lesart ist das ja völlig unwichtig.
Jetzt wirst du natürlich mir vorwerfen, ich hätte das alles nicht verstanden. Wahrheit funktioniert nicht per Mehrheitsmeinung, das ist klar. Aber es beruhigt mich, mit all den anderen Geisterfahrern in die gleiche Richtung zu fahren und nur dich in Gegenrichtung zu sehen. Fachlich kommen wir wohl nicht auf einen Nenner. Kein Einstein 18:15, 10. Okt. 2010 (CEST)Beantworten
Natürlich habe ich mir das Bild angesehen und auf Anhieb verstanden, so simpel wie das ist. In dem Bild gibt es zwei entgegengesetzt gleich große Kraftvektoren F12 und F21. Darunter schreibt Fließbach noch einmal ausdrücklich über diese Kraftvektoren (ich verzichte hier auf die Vektorschreibweise, aber es sind Vektoren): F12 = - F21. Und jetzt erkläre bitte, warum die Summe aus zwei entgegengesetzt gleichgroßen Vektoren deiner Meinung nach nicht Null ergeben soll. Die eine Kraft geht jeweils von einem Körper aus und die andere Kraft wirkt auf diesen Körper. Da es keine weiteren Kräfte gibt, sind diese Kräfte bzw. Kraftvektoren selbstverständlich immer entgegengesetzt gleich groß. Das ist die Aussage des 3. Axioms und ergibt sich in diesem simplen Bild bereits aus den grundlegendsten Prinzipien der Logik und Mathematik. Ich verstehe nicht wie du das bestreiten kannst. -- Pewa 19:18, 10. Okt. 2010 (CEST)Beantworten
Ich sagte es schon: Der Angriffspunkt dieser Kräfte ist nicht gleich. Wenn ich 10 Euro Guthaben habe und du 10 Euro Schulden, dann ist es sinnlos, daraus die Summe zu bilden. Kein Einstein 19:59, 10. Okt. 2010 (CEST)Beantworten
@Pewa: Die lex tertia besagt, daß ein fallender Apfel die Erde genauso stark anzieht wie die Erde den Apfel. Sie besagt aber nicht, daß die Summe der auf den Apfel einwirkenden Kräfte gleich null ist. Wenn dem so wäre, würde sich der (dann kräftefreie) Apfel auf einer geradlinig-gleichförmigen Bahn bewegen, was ja offensichtlich nicht der Fall ist. --ulm 16:53, 10. Okt. 2010 (CEST)Beantworten
Bitte lies noch einmal wie Fließbach das 3. Axiom formuliert. Er schreibt nur etwas über den Apfel (Massenpunkt). Um es einfach zu machen nehmen wir einen Apfel der im Gravitationsfeld ruht. Der Apfel selbst, genauer gesagt die schwere Masse des Apfels, wirkt mit der Kraft mg auf die Unterlage, die Unterlage wirkt mit der gleichen aber entgegengesetzten Kraft auf den Apfel. Diese beiden Kraftvektoren sind entgegengesetzt gleich groß, ihre Summe ist gleich Null. Sind wir uns soweit einig? -- Pewa 19:42, 10. Okt. 2010 (CEST)Beantworten
Newton sagt nichts über Apfel und Tisch. Er sagt etwas über die Kraft vom Erdmittelpunkt auf den Apfel und der gleichgroßen Kraft vom Apfel auf den Erdmittelpunkt (Ich denke wir beide wissen, in welchem Sinne Erdmittelpunkt zu verstehen ist). Wenn ein Tisch da ist, dann gibt es eine Kraft vom Apfel auf den Tisch und eine dazu gehörige gleichgroße Kraft, die von der Erde auf den Tisch ausgeübt wird. Das Beispiel ist so schön, dass es sogar im Tipler steht (nebst Bild). Wenn kein Tisch da ist, dann sind (du weißt schon in welchem Bezugssystem) Apfel und Erde jeweils nicht kräftefrei (F jeweils mg mit der Apfelmasse) und daher beschleunigt. Um diese Frage ging es zwischendurch mal... Kein Einstein 19:59, 10. Okt. 2010 (CEST)Beantworten
@Pewa: <MitEngelszungen>Man kann den fallenden Apfel entweder im Inertialsystem beschreiben: Dann gibt es eine Beschleunigung und die Summe der Kräft ist nicht null. Oder im mitbeschleunigten System. Dann ist die Beschleunigung null und die Summe aller Kräfte, einschließlich der Trägheitskraft (die durch Transformation in das beschleunigte Bezugssystem entsteht, nicht dadurch, dass das Apfel beschleunigt wird), ist auch null. Aber nicht beides vermischt (Trägheitskraft und Beschleunigung).</MitEngelszungen> --Pjacobi 17:10, 10. Okt. 2010 (CEST)Beantworten