Zum Inhalt springen

Benutzer:Ipb.uni-bonn/Spielwiese

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 11. August 2010 um 23:28 Uhr durch Ipb.uni-bonn (Diskussion | Beiträge). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Motivation

Desired properties of keypoint detectors:

  • Invariance and repeatability for object recognition
  • Accuracy to support camera calibration
  • Interpretability: Especially corners and circles, should be part of the detected keypoints (see figure).
  • As few control parameters as possible with clear semantics
  • Complementarity to known detectors

Using:

  • spiral model[1]
  • feature operator[2]

to create a

scale-invariant corner/circle detector.

Theory

Maximize the weight

Maximize the weight = 1/variance of a point

  

comprising:

1. the image model[1]

 
 
 (1)
 

2. the smaller eigenvalue of the structure tensor

 
 
 (2)
 

Reduce the search space

Reduce the 5-dimensional search space by

  • linking the differentiation scale to the integration scale
  • solving for the optimal using the model
  • and determining the parameters from three angles, e. g.
  • pre-selection possible:

Filter potential keypoints

  • non-maxima suppression over scale, space and angle
  • thresholding the isotropy :
    eigenvalues characterize the shape of the keypoint, smallest eigenvalue has to be larger than threshold
    derived from noise variance and significance level :

Algorithm

Algorithm
Algorithm

Results

Interpretability of SFOP keypoints

Repeatability and accuracy evaluation[3]

Using the performance evaluation for region detectors presented in [3] , the following results were achieved

Image Set A

Results

Image Set B

Results

References

  1. a b J. Bigün.
    A Structure Feature for Some Image Processing Applications Based on Sprial Functions.
    Computer Vision, Graphics and Image Processing, 51(1):166-194, 1990.
  2. W. Förstner.
    A Framework for Low Level Feature Extraktion.
    In Third European Conference on Computer Vision, volume III, pages 383-394, Stockholm, Sweden, 1994.
  3. a b K.Mikolajczyk and C. Schmid.
    An affine invariant interest point detector.
    In Proc. European Conf. Computer Vision, pages 128-142,2002.