Diskussion:Umtauschparadoxon
Archiv |
Wie wird ein Archiv angelegt? |
Themenaufbereitung verbesserungsbedürftig
Ich halte diesen Artikel trotz seiner ausschweifenden Diskussions-Historie noch für dringend verbesserungsbedürftig. Mich stören weniger die inhaltlichen Aussagen, als die Art ihrer Aufbereitung. Folgende Punkte sind meiner Meinung nach problematisch:
- Im Artikel werden verschiedene Varianten des Austauschparadoxons abgehandelt, aber nicht klar voneinander abgegrenzt. Und zwar:
- Die Ursprungsversion, bei der die Geldbeträge in den Umschlägen unbekannt aber fest (d. h. nicht zufällig) sind, wird in den Abschnitten Das Paradoxon und Die Denkfalle behandelt.
- Eine Version, bei der die Geldbeträge zufällig sind und einer bekannten statistischen Verteilung folgen, wird in den Abschnitten Die Lösung und Beispiel behandelt. Es fehlt aber der explizite Hinweis darauf, dass dort ein anderer Sachverhalt diskutiert wird.
- Eine Art randomisierte Umtausch-Strategie, bei der die statistische Verteilung der Geldbeträge unerheblich ist, wird im Abschnitt mit dem irreführenden Titel Anwendung des Zwei-Zettel-Spiels abgehandelt.
- Ich halte eine grobe Strukturierung des Artikels für sinnvoller, bei der die Überschriften explizit die drei inhaltlichen Varianten des Paradoxons kennzeichnen.
- Die Notation im Artikel ist inkonsistent. Die Variable Z wird oben im Artikel für den kleineren Geldbetrag und weiter unten für die Zufallsvariable der randomisierten Strategie verwendet, während dort der Geldbetrag mit n bezeichnet wird.
- Den Abschnitt Die Umtauschsitutaion finde ich etwas zu blumig. Dass die Herren Lemke und Schmidt auf einer Party sind und Alkohol getrunken haben, trägt nichts zur Erhellung des Problems bei. Besser fände ich eine nüchterne Einleitung der Art: "Einem Probanden werden zwei Briefumschläge mit Geld präsentiert, von denen einer einen doppelt so hohen Geldbetrag enthält wie der andere ..." Außerdem suggeriert der Text bereits den Spezialfall, bei dem die Geldbeträge zufällig bestimmt werden. Dies entspricht aber nicht der ursprünglichen Formulierung des Problems.
- Die ursprüngliche Version des Paradoxons und seine Lösung werden nur sehr rudimentär behandelt. Es wird insbesondere nicht hinreichend erklärt, was genau an der Rechnung im ersten Abschnitt falsch ist.
- Den Abschnitt Die Lösung halte ich in der Form für unbrauchbar. Zunächst mal wird nicht erwähnt, dass dies nicht die Lösung des ursprünglichen Umtauschparadoxons ist, sondern die Betrachtung einer anderen Variante, bei der der Geldbetrag einer bekannten Wahrscheinlichkeitsverteilung folgt. Die verwendeten Ereignisse werden gar nicht oder nicht korrekt definiert, z. B. , so dass der ganze Abschnitt sachlich nicht nachvollziehbar ist. Es wird auch überhaupt nicht definiert, was in diesem Beispiel die Zufallsvariablen sein sollen. Erst beim Lesen des darauf folgenden Abschnitts kann man sich zusammenreimen, dass es wohl die zufällige Verteilung des Geldbetrages sein soll.
Ich glaube auch nicht, dass die umständlichen Rechnungen notwendig sind. Wenn ich es richtig sehe, sollte die Lösung formal ziemlich simpel sein, etwa so: Sei N die Zufallsvariable, nach der der kleinere Geldbetrag bestimmt wird und x der Geldbetrag im gewählten Umschlag. Tauschen ist genau dann sinnvoll, wenn P(N=x | x ist der kleinere Betrag) > P(N=x | x ist der größere Betrag) ist. Bei der Unterscheidung, ob x der kleinere oder der größere Betrag ist, handelt es sich strenggenommen nicht um statistische Ereignisse, sondern um einen Vergleich verschiedener Szenarien, von denen eines wahr und eins falsch ist, wir wissen nur nicht welches. Deshalb ist der Terminus "Bedingte Wahrscheinlichkeit" hier zumindest fragwürdig. Es handelt sich viel mehr um einen Vergleich zweier Wahrscheinlichkeitsverteilungen unter der Annahme verschiedener Szenarien (vergleichbar mit der Maximum-Likelihood-Methode).(Denkfehler meinerseits --Ulrich Kaltenborn 19:53, 22. Mär. 2010 (CET)) - Die im Abschnitt Beispiel aufgestellte Wahrscheinlichkeitsverteilung ist grob fehlerhaft. Auch wenn es für eigentliche Aussage irrelevant ist, ein einfacheres aber dafür korrekt gerechnetes Beispiel, sowie eine klare inhaltliche Erläuterung dazu wären besser.
- Der Abschnitt Anwendung des Zwei-Zettel-Spiels sollte besser Randomisierte Umtausch-Strategie heißen. Im Abschnitt wird darauf hingewiesen, dass diese Strategie unabhängig von der Verteilung von N ist. Das Beispiel rechnet aber mit der explizit vorgegebenen Verteilung aus dem vorigen Abschnitt. Das ist zwar formal ok, ich finde es aber eher verwirrend. Es hat bei mir dazu geführt, dass ich erst mal gedacht habe: Schwachsinn, das kann nicht sein. Auch hier fände ich eine einfacheres Beispiel zur Illustration besser, das vor allem nicht mit Verweis auf den vorangehenden Abschnitt Verwirrung stiftet. Außerdem wird auf die recht überraschende Kernaussage der Strategie inhaltlich nicht eingegangen: dass nämlich jede Nennung eines beliebigen Geldbetrages in einem Umschlag einen (wenn auch ggf. geringen) Informationsgewinn enthält. Mit dieser Idee im Kopf lässt sich die Strategie dann auch sachlogisch motivieren, so dass sie auch dann glaubwürdig ist, wenn man die Wahrscheinlichkeiten nicht alle explizit nachrechnet.
Wenn es keine Inhaltlichen Einwände gegen meine Kritkpunkte gibt, werde ich nach und nach meine Verbesserungsvorschläge einarbeiten und den Artikel so umbauen, dass er hoffentlich etwas klarer und strukturierter wird. --Ulrich Kaltenborn 22:47, 21. Mär. 2010 (CET)
Antwort 1
- Sorry, aber einen konkreten Verbesserungsvorschlag kann ich noch nicht erkennen. Ein paar Bemerkungen zu den Kritikpunkten: ad1) Du schreibst zu den Geldbeträgen in den Umschlägen, dass sie unbekannt aber fest (d. h. nicht zufällig) seien. "Unbekannt aber fest" heißt nicht, dass sie nicht zufällig sind - wir wissen einfach nur nicht, wie sie zustande gekommen sind. Das ist doch der Clou an der Geschichte. ad2(Es fehlt aber der explizite Hinweis...): Steht doch genau vor dem Absatz: Der folgende Abschnitt geht der Frage auf den Grund, ob bei einer bekannten oder geschätzten Wahrscheinlichkeitsverteilung ein Tausch für gewisse Beträge sinnvoll sein kann, und ob es überhaupt eine Wahrscheinlichkeitsverteilung geben kann, bei der ein Tausch immer angezeigt ist. ad3(Anwendung des Zwei-Zettel-Spiels) Was ist an dem Titel irreführend? Deinen Vorschlag zur Umbenennung in "randomisierte Umtausch-Strategie" kann ich hingegen nicht folgen. Können Strategien randomisiert werden? --Rebiersch 23:57, 21. Mär. 2010 (CET)
- Mit "unbekannt aber fest" meine ich, dass ein Wert im Kontext einer Modellbetrachtung als vorgegeben angesehen wird, egal ob er schon immer fest war oder irgendwann mal als Ergebnis eines Zufallsvorgangs realisiert wurde. Entscheidend ist, dass wir nichts über einen solchen Zufallsvorgang wissen. Das ist die Situation im ursprünglichen Umtauschparadoxon. Und genau diese Tatsache, dass es keinen uns bekannten Zufallsvorgang gibt, ist notwendig um das Paradoxon aufzulösen. Deshalb finde ich den Satz über die Wahrscheinlichkeitsverteilung auch irreführend, weil er im Abschnitt die Denkfalle nicht das Thema ist. Sinnvoll fände ich es, stattdessen den folgenden Absatz mit einer Formulierung zu beginnen, wie z. B. "Geht man anders als in der ursprünglichen Formulierung des Paradoxons davon aus, dass die Geldbeträge in den Umschlägen einem Zufallsprozess folgen, dessen Wahrscheinlichkeitsverteilung vollständig bekannt ist, dann, usw bla bla. Irgendwas in der Art. Vor allem kann der Abschnitt nicht "Die Lösung" heissen, als ob er die Lösung des ursprünglichen Paradoxons enthielte, das behauptet, es lohne sich immer zu tauschen, auch wir keine zusätzlichen Informationen haben. Zum Randomisieren: Das Wort randomisiert bedeutet im wesentlichen zufällig gemacht. Ein randomisiertes Verfahren ist eines, bei dem man bewußt einen Zufallseinfluss einfließen lässt. Der Titel "Randomisierte Umtausch-Strategie" beschreibt also ziemlich präzise den Inhalt des Abschnitts. Offensichtlich kann man die Strategie zwar auch auf das Zwei-Zettel-Spiel anwenden. Der Inhalt des Abschnitts ist aber nicht eine Anwendung des Zwei-Zettel-Spiels, auf das im übrigen auch gar nicht weiter eingegangen wird. Insofern ist der Titel nicht nur irreführend, sondern sachlich falsch.--Ulrich Kaltenborn 19:53, 22. Mär. 2010 (CET)
- Zum "Zufallsvorgang": Herr Schmidt ist offensichtlich der Meinung, dass er Wahrscheinlichkeitsrechnung auf das Problem anwenden kann. "Geht man anders als in der ursprünglichen Formulierung des Paradoxons davon aus, dass die Geldbeträge in den Umschlägen einem Zufallsprozess folgen, dessen Wahrscheinlichkeitsverteilung vollständig bekannt ist, dann ..." trifft es nicht. Es geht nicht um die Frage, ob die Wahrscheinlichkeitsverteilung bekannt oder unbekannt ist, sodern vielmehr um die Frage, ob überhaupt irgendeine Wahrscheinlichkeitsverteilung existiert, bei der die Rechnung von Herrn Schmidt (es lohne sich immer zu tauschen) korrekt ist.
- Das Stichwort Randomisierter Algorithmus kann man von mir aus unterbringen; da müssten wir genauer schauen, ob und wo es wirklich passt.
- Der Zusammenhang mit dem Zwei-Zettel-Spiel wird auch in der Literatur hergestellt (Dov Samet, Iddo Samet, and David Schmeidler). Soweit ich es historisch nachvollziehen kann, hat Thomas M. Cover das Umschlagparadoxon nicht gekannt, als er das Zwei-Zettel-Spiel präsentierte, und die Verwandtschaft der Probleme ist erst später entdeckt worden. Die Hintergrundstruktur, die zumindest ich beim Aufbau des Artikels im Kopf habe, ist folgende:
- Zunächst geht es um die Frage, unter welchen Annahmen die Rechnung von Herrn Schmidt korrekt sein kann. Da stellt sich heraus, dass es keine solchen Annahmen gibt. Damit wäre die Sache erledigt mit dem (wenig überraschenden) Ergebnis, dass sich Tauschen nicht lohnt.
- Dann stellt sich heraus, dass es bei bekannter Verteilung durchaus (deterministische) Strategien gibt, bei denen sich (überraschenderweise) Tauschen (allerdings abhängig vom Inhalt) tatsächlich lohnt.
- Dann kommt natürlich der Einwand, dass das nicht hilft, weil eben nicht "die Geldbeträge in den Umschlägen einem Zufallsprozess folgen, dessen Wahrscheinlichkeitsverteilung vollständig bekannt ist". Hier kommt dann eben das (historisch anscheinend unabhängig entdeckte) Zwei-Zettel-Spiel, dessen Lösung hier als, wie Du es nennst, "Randomisierte Umtausch-Strategie" einsetzbar ist und auch bei unbekannter Wahrscheinlichkeitsverteilung eine lohnende Tauschstrategie liefert.
- Wenn's was hilft, kann ich durchaus versuchen, diese Struktur deutlicher herauszuarbeiten. --NeoUrfahraner 07:01, 23. Mär. 2010 (CET)
- Ich denke schon, dass es notwendig ist, die inhaltiche Struktur und die Ideen weiter herauszuarbeiten. Da wir ja wohl, was die Inhalte angeht, etwa auf einer Linie liegen, sollten die genauen Formulierungen auch nicht das Problem sein. Ich bestehe z. B. nicht auf dem Wort "randomisiert". Finde ich zwar sehr treffend, ist aber andererseits so ein Fachterminus, den im Zweifel keiner versteht. Und meine Formulierung mit den Zufallsprozessen kann man in der Tat so misverstehen, als gäbe es immer einen Prozess, nur vielleicht mit unbekannter Verteilung. Vielleicht sollten wir auch die erklärenden Sätze und/oder Beispiele einfach direkt im Artikel ein paar mal hin- und her iterieren, und nur wenn es einen echten Dissens gibt hier weiter diskutieren (sofern das im Einklang mit den Gepflogenheiten bei Wikipedia steht ((ich bin neu hier)), aber mir fällt es immer leichter, einen Änderungsvorschlag im Gesamtkontext zu sehen, um ihn beurteilen zu können).--Ulrich Kaltenborn 21:40, 23. Mär. 2010 (CET)
- Doch, es gibt immer einen Prozess, wie die Beträge in die Umschläge kommen. Weil Herrn Schmidt den Prozess nicht kennt, modelliert er ihn mit Wahrscheinlichkeitsrechnung. Siehe meinen Beitrag unten: die Wahrscheinlichkeitsrechnung ist nur ein Modell, mit dem Herrn Schmidt seine Unwissenheit beschreibt. Welches Modell sollte Hr. Schmidt denn sonst wählen, um seine Unwissenheit zu modellieren? --NeoUrfahraner 18:54, 24. Mär. 2010 (CET)
- Das Gegenteil ist richtig: Genau dann wenn Her Schmidt den (Wahrscheinlichkeits)-Prozess kennt (nicht aber dessen Ergebnis natürlich), dann liegt es daran, dass er eine Wahrscheinlichkeitsverteilung angeben kann. Kennt Herr Schmidt den Prozess nicht, dann kann auch keine Verteilung angeben. Hat er keine Verteilung, hat er auch keine Zufallsvariable und keine Wahrscheinlichkeiten. Stattdessen (wenn er gar nichts weiss) kann und muss er das (unbekannte) Ergebnis n des Geldbetrages als vorgegebenen Wert betrachten. Siehe dazu auch die aktuelle Version des Artikels (Indifferenz versus Unwissenheit). Wahrscheinlichkeiten sind ein Modell für Prozesse, deren Ergebnis sich nicht vorhersagen lässt, deren "Ablaufschema" (was passiert mit welcher Wahrscheinlichkeit) aber sehr wohl bekannt sein muss. --Ulrich Kaltenborn 21:21, 28. Mär. 2010 (CEST)
- Doch, es gibt immer einen Prozess, wie die Beträge in die Umschläge kommen. Weil Herrn Schmidt den Prozess nicht kennt, modelliert er ihn mit Wahrscheinlichkeitsrechnung. Siehe meinen Beitrag unten: die Wahrscheinlichkeitsrechnung ist nur ein Modell, mit dem Herrn Schmidt seine Unwissenheit beschreibt. Welches Modell sollte Hr. Schmidt denn sonst wählen, um seine Unwissenheit zu modellieren? --NeoUrfahraner 18:54, 24. Mär. 2010 (CET)
- Ich denke schon, dass es notwendig ist, die inhaltiche Struktur und die Ideen weiter herauszuarbeiten. Da wir ja wohl, was die Inhalte angeht, etwa auf einer Linie liegen, sollten die genauen Formulierungen auch nicht das Problem sein. Ich bestehe z. B. nicht auf dem Wort "randomisiert". Finde ich zwar sehr treffend, ist aber andererseits so ein Fachterminus, den im Zweifel keiner versteht. Und meine Formulierung mit den Zufallsprozessen kann man in der Tat so misverstehen, als gäbe es immer einen Prozess, nur vielleicht mit unbekannter Verteilung. Vielleicht sollten wir auch die erklärenden Sätze und/oder Beispiele einfach direkt im Artikel ein paar mal hin- und her iterieren, und nur wenn es einen echten Dissens gibt hier weiter diskutieren (sofern das im Einklang mit den Gepflogenheiten bei Wikipedia steht ((ich bin neu hier)), aber mir fällt es immer leichter, einen Änderungsvorschlag im Gesamtkontext zu sehen, um ihn beurteilen zu können).--Ulrich Kaltenborn 21:40, 23. Mär. 2010 (CET)
Antwort 2
- Ergänzend zu den Anmerkungen von Rebiersch:
- "Die Notation im Artikel ist inkonsistent": Dieser Punkt ist berechtigt; ich werde es mir genauer ansehen.
- "Die im Abschnitt Beispiel aufgestellte Wahrscheinlichkeitsverteilung ist grob fehlerhaft ... ein einfacheres aber dafür korrekt gerechnetes Beispiel ... dazu wären besser": Was genau soll denn fehlerhaft sein? Welches einfache Besipiel schlägst Du vor? --NeoUrfahraner 06:25, 22. Mär. 2010 (CET)
- Wenn ich nichts übersehen habe, so ist die Notation jetzt einheitlich. --NeoUrfahraner 13:54, 22. Mär. 2010 (CET)
- Ah Super! Mit der neuen Notation konnte zumindest ich mir jetzt auch einen Reim auf die Berechnungen im Abschnitt "Die Lösung" machen. Mit meiner eigenen Idee zu dem Thema hatte ich wohl zu kurz gedacht. Was das Rechenbeispiel angeht: Die Wahrscheinlichkeitsverteilung der Zufallsvariablen "Augensumme von zwei unabhängig geworfenen Würfeln" ist falsch. Ich würde mich aber unabhängig davon nochmal mit einer Idee für ein einfacheres Beispiel melden, wenn ich eins ausformuliert habe.--Ulrich Kaltenborn 19:53, 22. Mär. 2010 (CET)
- Danke für den Hinweis. Das war 85.179.58.95 am 26. Jan. 2010. Ich korrigier's gleich. --NeoUrfahraner 20:03, 22. Mär. 2010 (CET)
- Ah Super! Mit der neuen Notation konnte zumindest ich mir jetzt auch einen Reim auf die Berechnungen im Abschnitt "Die Lösung" machen. Mit meiner eigenen Idee zu dem Thema hatte ich wohl zu kurz gedacht. Was das Rechenbeispiel angeht: Die Wahrscheinlichkeitsverteilung der Zufallsvariablen "Augensumme von zwei unabhängig geworfenen Würfeln" ist falsch. Ich würde mich aber unabhängig davon nochmal mit einer Idee für ein einfacheres Beispiel melden, wenn ich eins ausformuliert habe.--Ulrich Kaltenborn 19:53, 22. Mär. 2010 (CET)
Was genau falsch ist
Zu "Es wird insbesondere nicht hinreichend erklärt, was genau an der Rechnung im ersten Abschnitt falsch ist.": Gefällt Dir die Erklärung "Es ist ein Trugschluss, den Inhalt des Umschlags nur in die Berechnung der Gewinnhöhe einzubeziehen, nicht aber in die Berechnung der Gewinnwahrscheinlichkeiten" in der Version vom 19. März 2008 diesbezüglich besser? --NeoUrfahraner 16:15, 23. Mär. 2010 (CET)
- Hmm, ich bin mir nicht sicher, ob ich den Satz überhaupt verstehe. Er scheint mir auch zu suggerieren, es gäbe es auf jeden Fall so etwas wie eine Gewinnwahrscheinlichkeit. Das was das Paradoxon hervorruft, ist meiner Meinung nach die mangelnde Unterscheidung zwischen physikalischen Wahrscheinlichkeiten (ex ante, der Zufall wirkt in der Zukunft) und subjektiven "Wahrscheinlichkeiten" (ex post-Plausibilitätsabschätzungen, alles ist schon gelaufen und es ist nicht gesagt ob der Zufall überhaupt gewirkt hat). Ich würde gerne in den nächsten Tagen mal einen etwas längeren erklärenden Text im Abschnitt "Das Paradoxon" unterbringen, der auch für statistisch nicht Gebildete nachvollziehbar ist, sozusagen als Diskussionsgrundlage. --Ulrich Kaltenborn 21:40, 23. Mär. 2010 (CET)
Einschub "mangelnden Unterscheidung"
- Zur "mangelnden Unterscheidung": Verwechsle nicht das Modell mit der Wirklichkeit. Die Ansicht, es gäbe so etwas wie physikalischen Wahrscheinlichkeiten ist naiver Realismus. Der Wahrscheinlichkeitsrechnung ist es völlig egal, ob Du damit "echten" Zufall (was immer das bloß sein soll) oder subjektive Unsicherheiten modellierst. Die Wahrscheinlichkeitsrechung ist nur insofern objektiv, als zwei Personen mit gleichen Methoden und gleichem Wissensstand zu gleichen Ergebnissen kommen. Zwei Personen mit unterschiedlichem Wissensstand kommen zu unterschiedlichen Wahrscheinlichkeiten. --NeoUrfahraner 18:41, 24. Mär. 2010 (CET)
Weiter bei "Was genau falsch ist"
- Jetzt noch inhaltlich zur Erklärung was falsch ist: Bezeichnen wir mit X den Betrag im ersten Umschlag und mit Y den Betrag im zweiten Umschlag, so ist die Frage, was Hr. Schmdit ausrechnet. Berechnet er den Erwartungswert von Y unter Vernachlässigung/Unkenntnis von X oder berechnet er den Erwartungswert von Y unter Berücksichtigung von X. Anscheinend will Hr. Schmdit den Erwartungswert von Y unter Berücksichtigung von X ausrechnen. Das kann er, dann muss er aber die richtige Formel wählen, die berücksichtigt, dass X und Y nicht unabhängig sind. So weit klar? --NeoUrfahraner 20:47, 24. Mär. 2010 (CET)
Anfang des Artikels geändert
Ich habe den Anfang des Artikels umgeschrieben:
- Die ursprüngliche Version des Paradoxons (Geldbetrag ist vorgegeben und wird nicht als Zufallsprozess modelliert) ist jetzt wesentlich ausführlicher beschrieben, inklusive Auflösung.
- Den Abschnitt "Die Denkfalle" habe ich in "Anwendung des Indifferenzprinzips" umbenannt und komplett umgeschrieben, da er in der bisherigen Form unverständlich war.
- Die Überschriften der danach folgenden Abschnitte habe ich (wie oben in der Diskussion angekündigt) auch geändert, die Inhalte aber erst mal nicht angefasst. Auf den Begriff "randomisiert" habe ich erst mal verzichtet.
- Das Beispiel mit Herrn Lemke und Herrn Schmidt habe ich noch nicht rausgenommen, weil weiter unten im Artikel mehrfach darauf Bezug genommen wird. Der Text ist dadurch zwar im Moment etwas redundant, aber bevor das Beispiel gelöscht werden kann, müssen auch die anderen Texte so umgebaut werden, dass sie ohne Bezug auf das Beispiel nachvollziehbar sind.--Ulrich Kaltenborn 21:04, 28. Mär. 2010 (CEST)
- Naja, jetzt haben wir einen Bearbeitungskonflikt. Ich werde mir Deine Version in Ruhe ansehen müssen. Wenn Du zuerst auf die Diskussion oben eingegangen wärst, wäre die Sache einfacher gewesen. --NeoUrfahraner 21:35, 28. Mär. 2010 (CEST)
- Der Satz "Beide Möglichkeiten sind nachträglich gleichermaßen plausibel, weil unser Auswahlprozeß W ebenfalls gleiche Wahrscheinlichkeiten hat" ist jedenfalls falsch. "nachträglich" bedeutet eben, dass es sich um die bedingte Wahrscheinlichkeit den kleineren/größeren Betrag gewählt zu haben nachträglich unter der Bedingung, einen gewissen Betrag vorgefunden zu haben. --NeoUrfahraner 21:43, 28. Mär. 2010 (CEST)
- Man sollte wohl besser schreiben "Aufgrund des Auswahlprozesse W sind beide Möglichkeiten gleich wahrscheinlich". Dass die Betrachtung erst nachträglich stattfindet, nachdem der Zufallsprozess "physikalisch" beendet ist, ist für die weiteren Berechnungen unerheblich. Insbesondere hat "nachträglich" nichts mit "bedingt" zu tun. Es gibt in dieser Betrachtung auch überhaupt keine Zufallsvariable, auf die ich bedingen könnte. Der einzige Zufallsprozess betrifft die Auswahl der Umschläge.--Ulrich Kaltenborn 22:39, 28. Mär. 2010 (CEST) Nachtrag: Stimmt natürlich nicht ganz, X und Y sind auch definiert. Worauf ich hinauswollte ist, dass ich keine bedingte Wahrscheinlichkeit von n gegeben x angebe, weil kein Zufallsprozess Z definiert ist, der zu einem Geldbetrag n führt. Das passiert erst weiter unten.--Ulrich Kaltenborn 22:55, 28. Mär. 2010 (CEST)
- Doch, die nachträgliche Betrachtung hat etwas mit bedingter Wahrscheinlichkeit zu tun. Außerdem ist die Überschrift "Strategie bei bekannten Wahrscheinlichkeiten" falsch, da in diesem Abschnitt die Wahrscheinlichkeiten nicht als bekannt vorausgesetzt werden. Ich habe das jetzt nochmals ausdrücklich im Artikel betont. An welcher Stelle wird denn Deiner Meinung nach diese Voraussetzung verwendet? Lediglich beim angegebenen Beispiel wird eine konkrete Verteilung verwendet. Den Abschnitt "Die Denkfalle" habe ich vorerst entfernt. Was davon erhalten bleiben soll, können wir noch genauer ansehen.
- Ansonsten: Du hast zu Recht kritisiert, dass der Artikel uneinheitliche Notation verwendet. Ich habe darauf die Notation vereinheitlicht. Wenn Du die gleiche Notation verewendest, werden die Unterschiede und Gemeinsamkeiten in den Betrachtungsweisen deutlicher. Ich habe also wieder auf die vorige Version zurückgestellt. Erklär jetzt bitte nochmals, was genau falsch/unverständlich/fehlend ist, dann können wir es leichter verbessern, als wenn Du den Artikel komplett umschreibst.
- Zuletzt: bitte beachte WP:Q --NeoUrfahraner 07:11, 29. Mär. 2010 (CEST)
- Nein, eine nachträgliche Berechnung von Wahrscheinlichkeiten und eine bedingte Wahrscheinlichkeit sind zwei komplett verschiedene Dinge. Und ja, wenn in den hergeleiteten Formeln so etwas wie steht, anhand der ich eine Entscheidung fällen kann, dann bedeutet das ganz genau, dass die Wahrscheinlichkeiten als bekannt vorausgesetzt werden. Und nein, ich habe den Artikel nicht komplett umgeschrieben, sondern den Anfang des Artikels erweitert und dabei den recht kurzen Abschnit "Die Denkfalle" ersetzt. Ich habe übrigens selbstverständlich eine zum Rest des Artikels konsistente Notation gewählt. Falls mir doch noch ein paar Inksonsitenzen durchgerutscht sein sollten (ich habe keine gefunden), dann hättest Du sie auch im Text korrigieren oder mich darauf hinweisen können. Das ist kein Grund, meine Änderungen einfach komplett wegzuwerfen. Ich habe meinen Standpunkt in einem neuen Abschnitt nochmal ausführlich dargestellt.--Ulrich Kaltenborn 13:40, 29. Mär. 2010 (CEST)
- Man sollte wohl besser schreiben "Aufgrund des Auswahlprozesse W sind beide Möglichkeiten gleich wahrscheinlich". Dass die Betrachtung erst nachträglich stattfindet, nachdem der Zufallsprozess "physikalisch" beendet ist, ist für die weiteren Berechnungen unerheblich. Insbesondere hat "nachträglich" nichts mit "bedingt" zu tun. Es gibt in dieser Betrachtung auch überhaupt keine Zufallsvariable, auf die ich bedingen könnte. Der einzige Zufallsprozess betrifft die Auswahl der Umschläge.--Ulrich Kaltenborn 22:39, 28. Mär. 2010 (CEST) Nachtrag: Stimmt natürlich nicht ganz, X und Y sind auch definiert. Worauf ich hinauswollte ist, dass ich keine bedingte Wahrscheinlichkeit von n gegeben x angebe, weil kein Zufallsprozess Z definiert ist, der zu einem Geldbetrag n führt. Das passiert erst weiter unten.--Ulrich Kaltenborn 22:55, 28. Mär. 2010 (CEST)
Rücknahme meiner Änderungen
Ich habe am 28. März 2010 diesen Artikel erweitert. Die Änderungen wurden vom Benutzer NeoUrfahraner am nächsten Tag komplett rückgängig gemacht. Ein von mir stark veränderter Abschnitt ist nun gar nicht mehr enthalten. Ich möchte hier noch einmal zusammenfassen, warum ich meine Änderungen für sinnvoll und notwendig halte, die Gründe für die Rücknahme der Änderungen dagegen für nicht stichhaltig.
Was ist überhaupt das Umtauschparadoxon
In der bisherigen Version des Artikels (vor meinen Änderungen) wurde überall vorausgesetzt, der Grundbetrag (also der kleinere Betrag) in den Briefumschlägen würde als Realisation einer Zufallsvariablen entstehen. Diese Annahme wurde an keiner Stelle explizit erwähnt. Das ist höchst problematisch, weil in der Formulierung des Paradoxons nicht die Rede davon ist, dass die Geldbeträge zufällig sind. Es wird auch keine (implizite oder explizite) Annahme über irgendeine derartige Verteilung gemacht. Zufällig ist in dieser Version nur die Auswahl der Umschläge.
Im Rahmen des Paradoxons kann man allerdings zwei unterschiedliche Betrachtungen anstellen. Die ursprüngliche Betrachtungsweise setzt den unbekannten Grundbetrag, n, als gegeben voraus. Eine andere Betrachtungsweise unterstellt die Existenz einer Zufallsvariablen, deren Wahrscheinlichkeitsverteilung als bekannt vorausgesetzt wird. Zumindest muss die Betrachtungsweise mit gegebenem n in dem Artikel behandelt werden. Sind beide Betrachtungen enthalten, so müssen beide gesondert behandelt werden, die jeweiligen Annahmen müssen klar benannt werden. Diese Unterscheidung beider Varianten wird auch in der im Artikel angegebenen Literatur (http://www.tau.ac.il/~samet/papers/one-observation.pdf) in der gleichen Form vorgenommen.
Was war an der bisherigen Einführung nicht in Ordnung
Im folgenden wiederhole ich in Kursivschrift den Inhalt der bisherigen Abschnitte "Das Paradoxon" und "Die Denkfalle". Eingerückt erscheint meine Kritik daran.
Wenn die Rechnung von Herrn Schmidt für jeden beliebigen Betrag das Ergebnis liefert, dass sich Tauschen lohnt, so braucht er den Umschlag gar nicht zu öffnen, sondern kann gleich den anderen Umschlag nehmen. Es kann aber nicht sein, dass der andere Umschlag immer besser ist, da ja beide Umschläge vor dem Öffnen offensichtlich gleichwertig sind.
- Dies ist eine sehr knappe und saloppe Beschreibung des Paradoxons, die keinen Ansatz zur Auflösung des Paradoxons bietet. Damit könnte ich leben, wenn diese Version der Paradoxons, also ohne Annahme einer statistischen Verteilung der Geldbeträge, irgendwann im Artikel näher erläutert werden würde.
Unser Wahrnehmungs- und Denkapparat ist ständig dabei, Strukturen zu suchen und zu erkennen. Das ist ein Erfolgsrezept. Diese Strukturerwartung drückt sich in der uns angeborenen Prägnanztendenz aus. Die Prägnanztendenz bewirkt unter anderem, dass wir kleine Unterschiede einebnen und Symmetrien überbetonen. In diesem Sinne ist das Indifferenzprinzip eine Ausprägung der Prägnanztendenz. Der grundsätzlich nützliche Mechanismus der Prägnanztendenz schießt bisweilen über das Ziel hinaus. Er wird dann zur Denkfalle.
- Das ist zwar ok, tut aber nicht wirklich was zur Sache. Es reicht, darauf hinzuweisen, dass das Indifferenzprinzip ein Versuch ist, die Annahme gleicher Wahrscheinlichkeiten für verschiedene Ereignisse zu begründen.
Beim Umschlagparadoxon tut sich eine solche Denkfalle auf. Das Indifferenzprinzip scheint anwendbar zu sein, denn mit 50-prozentiger Wahrscheinlichkeit wird der Umschlag mit dem größeren Betrag und mit ebenfalls 50-prozentiger Wahrscheinlichkeit der mit dem kleineren Betrag gewählt. Wenn wir den größeren Betrag 2Z und den kleineren Betrag Z nennen, gewinnt Herr Schmidt Z Euro oder verliert Z Euro durch den Tausch.
- Das ist zumindest Irreführend. Die Zufallsvariable, auf die hier Bezug genommen wird, betrifft die Auswahl der Briefumschläge. Hier ist es völlig ok, beide für gleich wahrscheinlich zu halten, denn dieser Zufallsvorgang findet ja kontrolliert statt.
Um eine sinnvolle Tauschstrategie zu ermitteln, ist jedoch die bedingte Wahrscheinlichkeit erforderlich.
- Erstens ist das nicht das Thema, sondern es geht darum, warum der Erwartungswert beim Tauschen nicht 125 Euro beträgt. Diese Rechnung wurde weder widerlegt, noch wurde erklärt, welcher Fehlschluss auf diese Rechnung führt. Zweitens wird hier nicht gesagt welche Zufallsvariable hier auf welches Ereignis welcher anderen Zufallsvariable bedingt wird. Drittens wird der Satz weder begründet, noch wird im folgenden erkennbar darauf eingegangen. Grund für die Verwirrung ist, dass mittem im Abschnitt stillschweigend das Thema gewechselt wird. Hier wird nämlich plötzlich unterstellt, der Geldbetrag n wäre das Ergebnis einer Zufallsvariablen mit als bekannt vorausgesetzter Verteilung. Ohne dass explizit auf den Unterschied zwischen einem fest vorgegebenen Wert n (wie in der Definition des Paradoxons) und n als Realisation einer Zufallsvariablen Z (wie hier implizit unterstellt) eingegangen wird, ist diese Aussage unsinnig.
Es geht hier erstens um die Wahrscheinlichkeit des Falles, dass 50 Euro in einem und 100 Euro im anderen Umschlag stecken und zweitens um die Wahrscheinlichkeit des Falles, dass es sich um 100 Euro und 200 Euro handelt. Nur wenn die Wahrscheinlichkeiten dieser beiden Fälle gleich sind, hat Herr Schmidt mit seinen Überlegungen recht.
- Auch dieser Satz ist unsinnig, wenn nicht explizit eine Zufallsvariable Z eingeführt wird, deren Realisationen hier beschrieben werden.
Und über die Wahrscheinlichkeiten dieser Fälle ist tatsächlich nichts bekannt. Da die Anzahl von denkbaren Fällen unendlich groß ist, können diese Wahrscheinlichkeiten gar nicht alle gleich sein. Das Indifferenzprinzip ist also ausgehend von einem aufgedeckten Betrag x auf die Ereignisse „doppelter Betrag“ (2x) und „halber Betrag“ (x/2) aus grundsätzlichen Erwägungen heraus nicht anwendbar. In der Denkfallen-Sammlung Denkfallen und Paradoxa wird das an ein paar Rechenbeispielen weiter verdeutlicht. Denkfallen und Paradoxa: Umtauschparadoxon (Briefumschlag-Paradoxon)
- Die Nicht-Anwendbarkeit des Indifferenzprinzips (hier korrekt, wenn man akzeptiert, dass wir über die Variante mit zufälligem n reden) wird nicht begründet oder erklärt. Als ganzes geht der Abschnitt also komplett an der Fragestellung vorbei, die eben nicht voraussetzt, dass n das Ergebnis eines Zufallsprozesses Z ist.
Aus diesen Gründen habe ich die Abschnitte, wie ich es vorher in der Diskussion angekündigt und begründet habe, umgeschrieben und erweitert. In meiner Version sind, soweit ich es erkennen kann, alle gemachten Annahmen explizit angeführt, die Schlussfolgerungen sind sachlich korrekt und nachvollziehbar. Die Beispiele auch für Nicht-Statistiker verständlich. Insbesondere wird klar zwischen den beiden oben genanneten Betrachtunsweisen unterschieden. Den gesamten Rest des Artikels habe ich inhaltlich nicht verändert.
Antwort auf die Kritik an meiner Version
- Die Kritik aus der obigen Diskussion, nachträgliches Berechnen von Wahrscheinlichkeiten hätte etwas mit bedingten Wahrscheinlichkeiten zu tun, ist sachlich falsch. Nachträgliche Berechnung von Wahrscheinlichkeiten und bedingte Wahrscheinlichkeiten sind zwei komplett verschiedene Dinge. Ich habe auch in der Diskussion bereits mehrfach versucht, klarzumachen, dass die ursprüngliche Version des Paradoxons keinerlei Verteilungsannahmen macht, die einen Grund für das Rechnen mit bedingten Wahrscheinlichkeiten bieten würden.
- Die Kritik an meiner neuen Überschrift "Strategie bei bekannter Verteilungsfunktion" ist sachlich falsch. Natürlich wird die Verteilung als bekannt angesehen. Die Terme kommen direkt aus dieser Verteilung und tauchen in der Lösung auf, die am Ende meine Entscheidungsregel darstellt. Ohne zu kennen, kann ich auch nicht entscheiden. Insbesondere (auch hier wiederhole ich mich) sind die Ausführungen dieses Abschnitts nicht "Die Lösung" des Paradoxons.
- Selbstverständlich habe ich eine Notation gewählt, die zum Rest des Artikels passt. Auch wenn es noch Inkonsistenzen geben sollte (ich habe keine gefunden), so ist das mit Sicherheit kein Grund, die gesamten Änderungen einfach zu verwerfen.
- Ich habe den Artikel nicht komplett umgeschrieben, sondern nur dessen Anfang. Ich habe das in der Diskussion angekündigt und eine Reihe von Gründen dafür genannt. Ich weise nochmal darauf hin, dass in der bisherigen und jetzt wieder aktuellen Version überhaupt keine Auflösung des Paradoxons in seiner ursprünglichen Form enthalten ist. Ich kann auch nicht erkennen, welche inhaltlichen Konflikte meine Änderungen eigentlich hervorrufen. Meine gesamten Änderungen können problemlos vorne im Artikel stehen, ohne dass die späteren Abschnitte davon betroffen sind.
Deshalb werde ich meine Änderungen jetzt ein zweites Mal einstellen und hoffe, dass sie diesmal nicht wieder einfach gelöscht werden.--Ulrich Kaltenborn 13:40, 29. Mär. 2010 (CEST)
Nachtrag: Die Änderungen sind gespeichert. Dabei ist mir aufgefallen, dass in dem Abschnitt "Die Lösung" (in meiner Version "Strategie mit bekannter Verteilung") jetzt eine zusätzliche Notation für einen Fall auftaucht, in dem für Z eine Einpunkt-Verteilung unterstellt wird. Ich halte sowohl die Notation für nicht sinnvoll (in der Statistik wäre es üblich, das einfach mit zu beschreiben), als auch diesen Zusatz für inhaltlich nicht sinnvoll. Bei der Betrachtung von n als Zufallsvariable ist es ein eher uninteressanter Spezialfall, als Versuch den Fall zu subsummieren, in dem n als gegeben betrachtet wird, ist es ungeeignet. Es ist im Gegenteil wichtig, die beiden Betrachtunsgweisen begrifflich und logisch sauber voneinander zu trennen. Ich habe das im Artikel erst mal beibehalten, diese (erst heute neu hinzugekommene) Notation in meinen eigenen Ausführungen aber ignoriert. --Ulrich Kaltenborn 13:57, 29. Mär. 2010 (CEST)