Zum Inhalt springen

Michael Faraday

Dieser Artikel ist ein Teilnehmer am Schreibwettbewerb
aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 25. März 2010 um 13:20 Uhr durch Wirama (Diskussion | Beiträge) (Magnetismus und Licht: Tempus). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Michael Faraday auf einem etwa 1841/42 entstandenen Ölgemälde von Thomas Phillips (1770–1845).
Faradays Unterschrift
Faradays Unterschrift

Michael Faraday (* 22. September 1791 in Newington, Surrey; † 25. August 1867 in Hampton Court Green, Middlesex) war ein englischer Naturforscher. Er gilt als einer der bedeutendsten Experimentalphysiker. Faradays Entdeckungen der „elektromagnetischen Rotation“ und der elektromagnetischen Induktion legten den Grundstein zur Herausbildung der modernen Elektroindustrie. Seine anschauliche Deutung des magnetooptischen Effekts und des Diamagnetismus mittels Kraftlinien und Feldern führten zur Entwicklung der Theorie des Elektromagnetismus. Bereits um 1820 galt Faraday als führender chemischer Analytiker Großbritanniens. Er entdeckte eine Reihe von neuen Kohlenwasserstoffen, darunter Benzol und Buten und formulierte die Grundgesetze der Elektrolyse.

Aufgewachsen in einfachen Verhältnissen, und ausgebildet als Buchbinder, fand der von der Naturforschung begeisterte Faraday eine Anstellung als Laborgehilfe von Humphry Davy an der Royal Institution, die zu seiner wichtigsten Wirkungsstätte wurde. Im Labor der Royal Institution führte er seine wegbereitenden elektromagnetischen Experimente durch, in ihrem Hörsaal trug er mit seinen Weihnachtsvorlesungen dazu bei, neue wissenschaftliche Erkenntnisse zu verbreiten. 1833 wurde Faraday zum ersten Fuller-Professor für Chemie ernannt.

Im Auftrag des britischen Staates bildete Faraday mehr als zwanzig Jahre lang die Kadetten der Royal Military Academy in Woolwich in Chemie aus. Er war Berater der Schifffahrtsbehörde Trinity House und arbeitete für das Board of Trade. Faraday gehörte zu den Anhängern einer kleinen christlichen Minderheit, den Sandemanianern, an deren religiösem Leben er aktiv teilnahm.

Leben und Wirken

Herkunft und Ausbildung

Der Laden von George Riebau in dem Michael Faraday seine siebenjährige Buchbinderlehre absolvierte.

Michael Faraday wurde am 22. September 1791 in Newington in der Grafschaft Surrey, das heute zum Londoner Borough Southwark gehört, geboren. Sein Geburtshaus lag an der Straße Newington Butts. Er war das dritte von vier Kindern des Schmieds James Faraday (1761–1810) und seiner Frau Margaret (geborene Hastwell, 1764–1838), einer Bauerntochter. Bis Anfang 1791[1] lebten seine Eltern mit seinen beiden älteren Geschwistern Elizabeth (1787–1847) und Robert (1788–1846) im kleinen Dorf Outhgill in der damaligen Grafschaft Westmorland im Nordwesten Englands (heute Cumbria). Als die Auswirkungen der Französischen Revolution zu einem Rückgang des Handels führten und die Familie von Armut bedroht war, beschlossen sie, in die unmittelbare Nähe von London zu ziehen. Faradays Vater fand Arbeit beim Eisenwarenhändler James Boyd im Londoner Stadtteil West End. Die Familie zog kurz darauf in die Gilbert Street und etwa fünf Jahre später in die Jacob's Well Mews. Dort wurde Faradays jüngere Schwester Margaret (1802–1862) geboren.

Bis zu seinem zwölften Lebensjahr besuchte Faraday eine einfache Tagesschule, wo ihm die Grundlagen des Lesens, Schreibens und Rechnens beigebracht wurden. 1804 fand er eine Anstellung als Laufbursche beim hugenottischen Auswanderer George Riebau, der in der Blanford Street einen Buchladen betrieb. Eine von Faradays Aufgaben bestand darin, am Morgen die Zeitung zu Riebaus Kunden zu bringen, sie im Laufe des Tages wieder abzuholen und zu weiteren Kunden zu tragen. Nach etwa einem Jahr als Laufbursche unterzeichnete Faraday am 7. Oktober 1805 einen siebenjährigen Lehrvertrag für eine Buchbinderlehre bei Riebau. Entsprechend den Gepflogenheiten der damaligen Zeit zog er zu seinem Lehrmeister und wohnte während seiner Ausbildung bei ihm.

Faraday erwies sich als ein geschickter, aufgeschlossener und wissbegieriger Lehrling. Er erlernte das Buchbinderhandwerk schnell und las aufmerksam viele der zum Binden gebrachten Bücher. Darunter befanden sich Jane Marcets 1806 erschienenen Conversations on Chemistry, eine populäre Einführung in die Chemie und der von James Tytler (1745–1804) für die dritte Auflage der Encyclopædia Britannica verfasste Beitrag über Elektrizität, aber auch die Geschichte von Ali Baba sowie Nachschlagewerke und Zeitschriften über Kunst. Riebau gestattete ihm die Durchführung kleinerer chemischer und elektrischer Experimente.

Unter den Werken, die Faraday studierte, befand sich auch Isaac Watts’ Buch The Improvement of the Mind (1741), das sich an Leser richtete, die ihr Wissen und ihre geistigen Fähigkeiten selbständig erweitern wollten. Der Autor legte in seinen Ausführungen Wert darauf, Wissen nicht nur passiv zu vermitteln, sondern seine Leser dazu anzuregen, sich aktiv damit auseinanderzusetzen. Watts empfahl unter anderem, sich Notizen zu Artikeln zu machen, bei Vorträgen Mitschriften anzufertigen und den Gedankenaustausch mit Gleichgesinnten zu suchen.[2]

Unter diesem Eindruck begann Faraday 1809 eine als The Philosophical Miscellany betitelte Sammlung von Notizen über Artikel zu den Themen Kunst und Wissenschaft, die er in verschiedenen Zeitungen und Zeitschriften gelesen hatte.[3] 1810 ermutigte Riebau den 19jährigen Faraday, die jeden Montag vom Goldschmied John Tatum in seinem Haus abgehaltenen wissenschaftlichen Vorträge zu besuchen. Tatum war der Gründer der 1808 ins Leben gerufenen City Philosophical Society, deren Ziel es war, Handwerkern und Lehrlingen den Zugang zu wissenschaftlichen Kenntnissen zu ermöglichen. Für die Vorträge war jeweils eine Gebühr von einem Shilling zu entrichten, den Faraday von seinem Bruder Robert erhielt. Mit dieser Unterstützung konnte er vom 19. Februar 1810 an bis zum 26. September 1811 etwa ein Dutzend Vorträge besuchen.[4] Während Tatums Vorträgen fertigte Faraday Notizen an, die er in seiner freien Zeit überarbeitete, zusammenfasste und in ein Notizbuch übertrug. Bei Tatum freundete er sich mit den Quäkern Benjamin Abbott (1793–1870) und Edward Magrath (1791?-1861) sowie Richard Phillips (1788–1851) an. Mit Abbott begann er am 12. Juli 1812 einen schriftlichen Gedankenaustausch, der viele Jahre fortdauerte.[5]

Faraday, dessen Lehrzeit bei Riebau dem Ende entgegen ging, verspürte wenig Neigung, sein Leben als Buchbinder zu verbringen. Er schrieb einen Brief an Joseph Banks, den Präsidenten der Royal Society, in dem er um eine niedrige Anstellung in den Laboratorien der Royal Society bat. Banks hielt es jedoch nicht für erforderlich, sein Ersuchen zu beantworten.[6] Am 8. Oktober 1812, einen Tag nach Ende seiner Lehrzeit, trat Faraday seine Tätigkeit als Buchbindergeselle bei Henri De La Roche an.[7]

Anstellung als Laborgehilfe

Die Royal Institution of Great Britain wurde für vier Jahrzehnte die wichtigste Wirkungsstätte Faradays, Gemälde von Thomas Hosmer Shepherd (1793–1864), um 1838

Anfang 1812 zeigte Riebau dem Sohn von William Dance[8] (1755–1840), einem seiner Kunden, Faradays Notizbuch mit den Mitschriften von Tatums Vorträgen. Dieser berichtete seinem Vater davon, der daraufhin Faraday zu Humphry Davys letzten vier Vorlesungen mit dem Titel The Elements of Chemical Philosophy als Professor der Chemie im März und April 1812 mitnahm. Davy galt als herausragender Vorlesender und hatte sich in der Fachwelt durch die Entdeckung der Elemente Kalium, Natrium und Chlor ein hohes Ansehen erworben. Während Davys Vorträgen machte sich Faraday zahlreiche Notizen, die er, überarbeitet und mit Zeichnungen versehen, zu einem Buch band und an Davy schickte.

Ende Oktober 1812 befand sich Davy jedoch nicht in London, sondern wiederholte gemeinsam mit John George Children in Tunbridge Wells einen Versuch von Pierre Louis Dulong, der kurz zuvor eine neue Verbindung aus Chlor und Stickstoff entdeckt hatte. Während der Experimente explodierte ein Glasröhrchen mit dem entstandenen Stickstofftrichlorid und verletzte Davys linkes Auge schwer. Davy wurde umgehend zur Behandlung nach London gebracht und fand dort Faradays Sendung vor. Da er auf Grund seiner Augenverletzung zur Ordnung seiner Notizen Hilfe benötigte, lud er Faraday Ende des Jahres 1812 zu sich nach Hause ein.[9]

Am 19. Februar 1813[10] kam es an der Royal Institution zwischen dem Laborgehilfen William Payne und dem Instrumentenbauer John Newmann zu einer handgreiflichen Auseinandersetzung. Drei Tage später wurde Payne von den Managern der Royal Institution entlassen. Davy, der einen neuen Assistenten benötigte, schlug Faraday für den vakanten Posten vor. Am 1. März 1813 begann dieser seine Tätigkeit als Laborgehilfe an der Royal Institution. Seine Pflichten umfassten die Betreuung und Unterstützung der Vortragenden und Professoren bei der Vorbereitung und Durchführung ihrer Vorlesungen, das wöchentliche Reinigen der Modelle im Lager sowie das monatliche Entstauben der Instrumente in den Glaskästen.[11] Er bezog die zwei Räume seines Vorgängers und erhielt die Erlaubnis das Labor für eigene Experimente zu benutzen.

Reise durch Kontinentaleuropa

Datei:Davy3.jpg
Humphry Davy. Porträt von Thomas Lawrence (1821)

Napoleon Bonaparte hatte Davy eine Goldmedaille für dessen Beiträge zur Elektrochemie verliehen, die er in Paris entgegennehmen wollte. Trotz der andauernden Napoleonischen Kriege erhielt er daher von der französischen Regierung die Erlaubnis, Kontinentaleuropa zu bereisen. Davy und seine Frau Jane Apreece (1780–1855) planten daher 1813 eine Reise durch Kontinentaleuropa, die auf zwei oder drei Jahre ausgelegt war und bis nach Konstantinopel führen sollte. Er bat Faraday, ihn als sein Amanuensis (Sekretär und wissenschaftlicher Gehilfe) zu begleiten. Das bot ihm, der sich noch nie „weiter als zwölf Meilen“ von London entfernt hatte, viele Gelegenheiten, von Davy zu lernen und mit einigen der bedeutendsten ausländischen Naturforschern in Kontakt zu kommen.

Am 13. Oktober 1813 verließ die fünfköpfige Reisegesellschaft London. In Plymouth schiffte sie sich nach Morlaix ein, wo sie durchsucht und für etwa eine Woche festgesetzt wurde. Am Abend des 27. Oktober erreichte sie schließlich Paris. Faraday erkundete die Stadt, die ihn sehr beeindruckte, [12] und besuchte gemeinsam mit Davy und dem Geologen Thomas Richard Underwood (1772–1835) das Musée Napoleon. Im Labor des Chemikers Louis-Nicolas Vauquelin beobachteten Davy und Faraday die Herstellung von Kaliumchlorid, die sich von der in England angewandten Methode unterschied. Am Morgen des 23. November suchten André-Marie Ampère, Nicolas Clément und Charles-Bernard Desormes (1771–1862) Davy in seinem Hotel auf, präsentierten ihm eine zwei Jahre zuvor durch Bernard Courtois entdeckte Substanz und führten ihm einige Experimente vor, bei denen violette Dämpfe entstanden. Mit Faradays Hilfe führte Davy eigene Experimente durch, unter anderem im Labor von Eugène Chevreul im Jardin des Plantes. Am 11. Dezember wurde ihm klar, dass es sich bei der Substanz um ein neues Element handelte, das er nach dem griechischen Wort iodes für ‚violett‘ Iod nannte. Davys Experimente verzögerten die geplante Weiterreise nach Italien.

Am 29. Dezember 1813 verließen sie Paris, Davy hoffte, an der Mittelmeerküste iodhaltige Pflanzen zu finden. Faraday wurde Anfang Februar in Montpellier Zeuge des Durchzugs von Papst Pius VII., der nach seiner Befreiung durch die Alliierten nach Italien zurückkehrte. Nach einem einmonatigen Aufenthalt setzten sie in Begleitung von Frédéric-Joseph Bérard (1789–1828) ihren Weg nach Italien fort. Über Nîmes und Nizza überquerten sie die Alpen am Tenda-Pass. Während des beschwerlichen Weges von Stadt zu Stadt erklärte Davy Faraday die geologische Beschaffenheit der Landschaft und machte ihn mit den antiken Kulturstätten vertraut.

In Genua verhinderte schlechtes Wetter die Weiterreise. Davy nutzte die Verzögerung, um bei Domenico Viviani (1772–1840), der einige „Elektrische Fische“ in Gefangenschaft hielt, Experimente durchzuführen mit denen er überprüfen wollte, ob die Entladung dieser Fische ausreicht, um Wasser zu zersetzen. Die Ergebnisse seiner Experimente waren negativ. Am 13. März überquerten sie mit dem Schiff den Golf von Genua. Einen Tag vor der Landung der britischen Armee in Livorno passierten sie Lucca und gelangten am 16. März nach Florenz, wo sie das Museum der Accademia del Cimento besuchten, in dem sich unter anderem Galileo Galileis Beobachtungsinstrumente befanden. Davy und Faraday setzten ihre Versuche mit Iod fort und bereiteten ein Experiment vor, das beweisen sollte, dass Diamanten aus reinem Kohlenstoff bestehen. Dazu verwendeten sie große Brenngläser[13] aus dem Besitz von Großherzog Ferdinand III. Am 27. März 1814 gelang dieser Nachweis zum ersten Mal. In den folgenden Tagen wiederholten die Beiden das Experiment noch mehrere Male.

Die Ankunft in Rom erfolgte inmitten der Karwoche. Wie schon an anderen Orten erkundete Faraday die Stadt auf eigene Faust. Er war besonders vom Petersdom und dem Kolosseum beeindruckt. An der Accademia dei Lincei experimentierten Davy und Faraday mit Kohle, um einigen offenen Fragen aus dem Diamanten-Experiment nachzugehen. Am 5. Mai waren sie im Haus von Domenico Morichini (1773–1836) zu Gast. Dort wiederholte Faraday erfolglos unter der Anleitung des Hausherren dessen Experiment zur vermeintlichen Magnetisierung einer Nadel durch den violetten Spektralanteil des Sonnenlichts. Zwei Tage später brachen sie zu einem zweiwöchigen Abstecher nach Neapel auf. Dort bestiegen sie mehrmals den Vesuv. Caroline Bonaparte, die Königin von Neapel, machte Davy ein Gefäß mit antiken Farbpigmenten zum Geschenk, die beide später analysierten.

Um der Sommerhitze zu entfliehen, brach die Reisegesellschaft am 2. Juni von Rom aus in Richtung Schweiz auf. Über Terni, Bologna, Mantua und Verona gelangten sie nach Mailand. Hier begegnete Faraday am 17. Juni Alessandro Volta. Sie kamen am 25. Juni 1814 in Genf an und verbrachten den Sommer bei Charles-Gaspard de la Rive in dessen Haus am Genfersee, jagten, fischten und experimentierten weiter mit Iod und arbeiteten mit Marc-Auguste Pictet und Nicolas-Théodore de Saussure zusammen. Am 18. September 1814 reisten sie über Lausanne, Vevey, Payerne, Bern, Zürich und den Rheinfall bei Schaffhausen schließlich nach München, wo sie drei Tage blieben.

Auf dem Weg zurück nach Italien überquerten sie den Brennerpass, besuchten Padua und Venedig. In Florenz untersuchten sie ein brennbares Gas, das in Pietramala dem Erdboden entwich und das sie als Methan identifizierten. In Rom, wo sie am 2. November 1814 ankamen und bis zum März 1815 blieben, erlebte Faraday das Weihnachtsfest und besuchte während des Karnevals mehrere Maskenbälle. Davy und Faraday führten weitere Experimente mit Chlor und Iod durch, während denen Davy die neue Chlor-Sauerstoff-Verbindung Chlordioxid entdeckte.

Die Pläne, nach Konstantinopel weiterzureisen, zerschlugen sich. Sie erreichten das heimatliche London, nachden sie Tirol und Deutschland durchquert hatten, am 23. April 1815.

Entwicklung zum chemischen Analytiker

Faradays Laboratorium an der Royal Institution um 1819

Nach der Rückkehr nach London war Faraday zunächst ohne Anstellung. Auf Wunsch von William Thomas Brande, der 1812 von Davy die Position des Professors für Chemie übernommen hatte, und mit voller Unterstützung durch Davy, der eine Woche zuvor zum Vizepräsidenten der Royal Institution gewählt worden war, erhielt Faraday am 15. Mai seinen alten Posten als Laborgehilfe wieder und war zusätzlich für die mineralogische Sammlung verantwortlich.

Faraday besuchte erneut die Vorträge der City Philosophical Society und wurde Mitglied der Gesellschaft. Am 17. Januar 1816[14] hielt er dort seinen ersten Vortrag über Chemie, dem in den nächsten zweieinhalb Jahren 16 weitere folgten. Um seine Fähigkeiten als Vortragender zu vervollkommnen, besuchte er 1818 die am Donnerstagabend an der Royal Institution abgehaltenen Rhetorikkurse von Benjamin Humphrey Smart (1786–1872). Gemeinsam mit vier Freunden gründete er im Sommer desselben Jahres einen Schreibzirkel. Die Mitglieder der nach den Richtlinien der City Philosophical Society organisierten Gruppe verfassten Aufsätze zu frei wählbaren oder festgelegten Themen, die anonym eingereicht und in der Gruppe gemeinsam bewertet wurden.[15]

Im Labor der Royal Institution führte Faraday häufig in Davys Auftrag Experimente durch und war 1816 maßgeblich an dessen Untersuchungen beteiligt, die zur Entwicklung der im Bergbau eingesetzten „Davy-Lampe“ führten. Für Brande, dem Herausgeber des Quarterly Journal of Science, stellte Faraday ab 1816 die „Miscellanea“ betitelten Seiten zusammen und übernahm im August 1816 während Brandes Abwesenheit die volle Verantwortung für das Journal.[16] 1816 erschien im Quarterly Journal of Science auch Faradays erste wissenschaftliche Veröffentlichung über aus der Toskana stammende Kalksteinproben. Bis Ende 1819 hatte er 37 Mitteilungen und Artikel im Quarterly Journal of Science veröffentlicht[17], darunter eine Untersuchung über das Entweichen von Gasen aus Kapillarrohren und Bemerkungen über „Singende Flammen“.

In seinem Labor führte Faraday für William Savage (1770–1843), den Drucker der Royal Institution, Papieranalysen durch, untersuchte Tonerdeproben für den Töpfermeister Josiah Wedgwood (1769–1843) und nahm in gerichtlichem Auftrag kriminaltechnische Untersuchungen vor.[18] Anfang 1819 begann Faraday gemeinsam mit James Stodart (1760–1823), der chirurgische Instrumente herstellte, eine umfangreiche Reihe von Experimenten, die sich mit der Verbesserung von Stahllegierungen beschäftigten. Er untersuchte zunächst Wootz, ein weit verbreitetes Ausgangsprodukt für Stahl, auf dessen chemische Zusammensetzung.[19] Es folgten zahlreiche Versuche zur Veredelung von Stahl, bei denen unter anderem Platin und Rhodium zum Einsatz kamen.[20][21] Die Stahluntersuchungen erstreckten sich über einen Zeitraum von etwa fünf Jahren und wurden nach Stodarts Tod von Faraday alleine fortgeführt. [22]

Am 21. Dezember 1820 wurde Faradays erste für den Abdruck in den Philosophical Transactions bestimmte Abhandlung vor den Mitgliedern der Royal Society verlesen. Darin wurden die beiden neuen von ihm entdeckten Chlorkohlenstoffverbindungen Tetrachlorethen und Hexachlorethan beschrieben.[23] Zu dieser Zeit galt Faraday bereits als Großbritanniens führender chemischer Analytiker.[24] 1821 wurde er zum „Superintendent of the House“ der Royal Institution ernannt. Am 12. Juni 1821 heiratete er Sarah Barnard (1800–1879), die Schwester seines Freundes Eduard Barnard (1796–1867), die er im Herbst 1819 kennengelernt hatte. Ihre Ehe blieb kinderlos.

Anerkennung als Naturforscher

„Elektromagnetische Rotation“

Versuchsanordnung zum Nachweis der elektromagnetischen Rotation

1821 bat Richard Phillips, mittlerweile Herausgeber der Annals of Philosophy, Faraday um einen Abriss aller bekannten Erkenntnisse über Elektrizität und Magnetismus. Kurz zuvor hatte Hans Christian Ørsted seine Beobachtungen über die Ablenkung einer Kompassnadel durch elektrischen Strom veröffentlicht. Faraday wiederholte in seinem Labor Experimente von Ørsted, André-Marie Ampère und François Arago. Sein zweiteiliger Historical Sketch of Electro-Magnetism erschien, auf seinen Wunsch anonym, im September und Oktober 1821 in den Annals of Philosophy.[25] Am 3. September[26] gelang Faraday zum ersten Mal ein Experiment, bei dem sich ein stromdurchflossener Leiter unter dem Einfluss eines Dauermagneten um seine eigene Achse dreht. Noch im gleichen Monat veröffentlichte er seine Entdeckung im Quarterly Journal of Science.[27] Die sogenannte „elektromagnetische Rotation“ war eine wesentliche Voraussetzung für die Entwicklung des Elektromotors.

Bereits wenige Tage nach Veröffentlichung seiner Entdeckung bezweifelten Freunde von William Hyde Wollaston, darunter Davy, die Eigenständigkeit der Arbeit Faradays. Sie bezichtigten ihn, die Idee „elektromagnetische Rotation“ von Wollaston gestohlen und dessen Autorschaft nicht gewürdigt zu haben. Faradays experimenteller Nachweis unterschied sich jedoch völlig von der von Wollaston vorgeschlagenen Lösung, was dieser auch anerkannte. Da die Gerüchte in der Öffentlichkeit darüber nicht abebbten, war Faraday gezwungen, die Autorschaft seines Historical Sketch of Electro-Magnetism offenzulegen.[28]

Entdeckungen auf dem Gebiet der Chemie

Michael Faraday auf einem Stich von John Cochran (1821–1865) nach einem Portrait von Henry Pickersgill (1782–1875), um 1829

1823 begann Faraday die Eigenschaften des von Davy entdeckten Chlorhydrats zu untersuchen.[29] Er erhitzte Chlorhydrat unter Druck, womit ihm im März 1823[30] zu ersten Mal in der Geschichte der Chemie die Verflüssigung eines Gases gelang.[31] Dieser Erfolg führte zu einer weiteren Anspannung seines Verhältnisses zu Davy.[32] 1823 und nochmals 1844, als er sich erneut mit dem Thema beschäftigte, gelang es ihm, Ammoniak, Kohlenstoffdioxid, Schwefeldioxid, Distickstoffmonoxid, Chlorwasserstoff, Schwefelwasserstoff, Dicyan und Ethen zu verflüssigen. Faraday erkannte als Erster, dass eine kritische Temperatur existiert, oberhalb derer sich Gase unabhängig vom ausgeübten Druck nicht mehr verflüssigen lassen. Er wies nach, dass die Zustände „fest“, „flüssig“ und „gasförmig“ ineinander überführbar sind und keine festen Kategorien bilden.[33]

1825 fielen Faraday in Kannen mit Leuchtgas, die sein bei der London Gas Company arbeitender Bruder Robert der Royal Institution lieferte, flüssige Rückstände auf. Er analysierte die Flüssigkeit und entdeckte eine neue Kohlenwasserstoff-Verbindung, die er als „Bicarburet of Hydrogen“ bezeichnete.[34] Von Eilhard Mitscherlich erhielt diese Substanz, ein aromatischer Kohlenwasserstoff, im selben Jahr die Bezeichnung Benzol. Kurz darauf entdeckte er mit Buten eine Verbindung, die die gleiche Summenformel wie Ethen hatte, sich aber in den chemischen Eigenschaften völlig unterschied (Isomerie). 1826 ermittelte Faraday die Zusammensetzung von Naphthalin und stellte zwei verschiedene kristalline Proben von Naphthalinschwefelsäure her.

Im April 1827 erschien Chemical Manipulation. Faradays Monografie war eine Einführung in die praktische Chemie und richtete sich an Anfänger auf dem Gebiet der chemischen Naturforschung. Ihr Inhalt umfasste, beginnend mit der zweckmäßigen Einrichtung eines Laboratoriums über die zweckmäßige Durchführung chemischer Experimente bis hin zur Fehleranalyse, alle Belange der praktischen Chemie. Der Erstausgabe folgten 1830 und 1842 zwei weitere Auflagen.[35]

Herstellung optischer Gläser

Am 1. April 1824 gründeten die Royal Society und das Board of Longitude eine gemeinsame Kommission (Committee for the Improvement of Glass for Optical Purposes). Sie hatte das Ziel, Rezepturen für die Herstellung hochwertiger optischer Gläser zu finden, die mit den von Joseph von Fraunhofer in Deutschland hergestellten Flintgläsern konkurrieren konnten. Die Untersuchungen fanden anfangs in den von [Apsley Pellatt]] (1763–1826) und James Green betriebenen Falcon Glass Works statt. Um die Durchführung der Experimente direkter überwachen zu können, wurde am 5. Mai 1825 ein Unterkomitee berufen, das aus John Herschel, George Dollond und Faraday bestand. Nach der Errichtung eines neuen Schmelzofens an der Royal Institution wurden die Glasuntersuchungen ab September 1827 an der Royal Institution durchgeführt. Zur Entlastung Faradays wurde am 3. Dezember 1827 Charles Anderson († 1866), ein ehemaliger Sergeant der Royal Artillery, eingestellt. Die Glasuntersuchungen waren für über fünf Jahre Faradays Hauptaufgabe und Ende 1829 das Thema seiner ersten Baker-Vorlesung vor der Royal Society. 1830 wurden die Glasexperimente aus finanziellen Gründen gestoppt. Ein 1831 vorgelegter Bericht der Astronomen Henry Kater (1777–1835) und John Pond, die ein Teleskop mit einem Objektiv aus einem von Faraday hergestellten Glas testeten, bescheinigte dem Glas gute achromatische Eigenschaften. Faraday hielt seine Ergebnisse jedoch für einen Fehlschlag.[36]

Institutioneller Aufstieg

Auf Betreiben seines Freundes Richard Phillips, der kurz zuvor selbst in die Royal Society aufgenommen worden war, wurde am 1. Mai 1823 zum ersten Mal der Antrag zur Aufnahme von Faraday in die Gesellschaft verlesen. Der Antrag trug die Unterschrift von 29 Mitgliedern und musste an zehn aufeinanderfolgenden Sitzungen verlesen werden.[37] Davy, seit 1820 Präsident der Royal Society, wollte die Wahl Faradays verhindern und versuchte, die Rücknahme des Antrages zu erwirken. Mit einer Gegenstimme[38] wurde Faraday am 8. Januar 1824 in die Royal Society aufgenommen.

Von März bis Juni 1824[39] fungierte Faraday aushilfsweise als erster Sekretär des von Davy mitgegründeten Londoner Clubs The Athenaeum. Als ihm im Mai vorgeschlagen wurde, den Posten für ein Jahresgehalt von 100 Pfund dauerhaft zu übernehmen, schlug er das Angebot aus und empfahl seinen Freund Edward Magrath für diese Position.

Am 7. Februar 1825 wurde Faraday zum Labordirektor der Royal Institution ernannt und begann dort die ersten eigenen Vorträge abzuhalten. Einen Monat vor den ersten Freitagabendvorlesungen im Februar 1826 wurde er von der Verpflichtung befreit, Brande bei dessen Vorlesungen zu assistieren. 1827 hielt Faraday Vorlesungen an der London Institution und gab die erste seiner zahlreichen Weihnachtsvorlesungen. Ein Angebot, erster Professor für Chemie an der neu gegründeten University of London zu werden, lehnte er mit einem Hinweis auf seine Verpflichtungen an der Royal Institution ab. 1828 wurde er mit der Fuller-Medaille geehrt. Bis 1831 half er Brande bei der Herausgabe des Quarterly Journal of Science und betreute anschließend die ersten fünf Ausgaben des neuen Journal of the Royal Institution.

Bis Ende 1830 machte Faraday drei bedeutende chemische sowie eine physikalische Entdeckung und veröffentlichte 60 Abhandlungen, davon neun in den Philosophical Transactions.[40]

Untersuchungen über Elektrizität (1831 bis 1838)

Elektromagnetische Induktion

Bereits 1822 merkte Faraday in seinem Notizbuch an: „Convert magnetism into electricity“ („Magnetismus in Elektrizität umwandeln“).[41] In seinem im September 1820 begonnenen Labortagebuch notierte er am 28. Dezember 1824 erstmalig ein Experiment, mit dem er versuchte, mit Hilfe von Magnetismus Elektrizität zu erzeugen. Der erwartete elektrische Strom blieb jedoch aus.[42] Am 28. und 29. November 1825 sowie am 22. April 1826 führte er weitere Versuche durch, ohne jedoch das gewünschte Ergebnis zu erzielen.

Nach einer durch die aufwändigen Glasuntersuchungen bedingten fünfjährigen Pause wandte sich Faraday am 29.  August 1831 erstmals wieder elektromagnetischen Experimenten zu. Er hatte von seinem Assistenten Anderson einen Weicheisenring mit einem Innendurchmesser von sechs Zoll (etwa 15 Zentimeter) anfertigen lassen. Auf der einen Seite des Ringes brachte er drei Wicklungen aus Kupferdraht an, die durch Bindfaden und Kattun voneinander isoliert waren. Auf der anderen Seite des Ringes befanden sich zwei solche Wicklungen. Er verlängerte auf der einen Seite die beiden Enden einer der Wicklungen mit einem langen Kupferdraht, der zu einer etwa drei Fuß (etwa ein Meter) entfernten Magnetnadel führte. Eine der Wicklungen auf der anderen Seite verband er mit den Polen einer Batterie. Jedes Mal, wenn er den Stromkreis schloss, bewegte sich die Magnetnadel aus ihrer Ruhelage. Beim Öffnen des Stromkreises bewegte sich die Nadel erneut, nur diesmal in die entgegengesetzte Richtung. Faraday hatte die elektromagnetische Induktion entdeckt und dabei ein Prinzip angewandt, das den später entwickelten Transformatoren zugrunde liegt. Seine Experimente, die bis zum 4. November andauerten, unterbrach er für einen dreiwöchigen Ferienaufenthalt mit seiner Frau in Hastings und einer vierzehntägigen Untersuchung für die Royal Mint. Während seiner an nur elf Tagen[43] durchgeführten Experimente fand er heraus, dass ein zylindrischer Stabmagnet, der durch eine Drahtwendel bewegt wird, einen elektrischen Strom induziert. Nach diesem Grundprinzip arbeiten elektrische Generatoren. Er zeigte auch, dass derselbe Effekt erzielt wird, wenn der magnetische Kontakt zwischen zwei Stabmagneten durch einen mit Draht umwickelten Eisenkern hergestellt wird.[44][45][46][47]

Faradays Bericht über die Entdeckung der elektromagnetischen Induktion[48] wurde von ihm am 24. November sowie am 8. und 15. Dezember 1831 vor der Royal Society vorgetragen. Die in den Philosophical Transactions abgedruckte Form erschien erst im Mai 1832. Die lange Verzögerung ergab sich aus einer Änderung der Veröffentlichungsbedingungen für neue Artikel. Bis Ende 1831 reichte ein Mehrheitsbeschluss des Commitee of Papers zur Veröffentlichung eines Artikels in den Philosophical Transactions. Die geänderten Regeln sahen eine individuelle Begutachtung der Artikel vor. Das Gutachten zu Faradays Artikel schrieben der Mathematiker Samuel Hunter Christie und der Mediziner John Bostock (1773–1846).[49]

Im Dezember 1831 schrieb Faraday an seinen langjährigen französischen Briefpartner Jean Nicolas Pierre Hachette und teilte ihm darin seine jüngsten Entdeckungen mit. Hachette zeigte den Brief dem Sekretär des Institut de France, François Arago, der das Schreiben am 26. Dezember 1831 vor den Mitgliedern des Instituts verlas. In den französischen Zeitungen Le Temps und Le Lycée erschienen am 28. bzw. 29. Dezember 1831 Berichte über Faradays Entdeckung. Der Londoner Morning Advertiser druckte diese am 6. Januar 1832 nach. Die Presseberichte bedrohten die Priorität seiner Entdeckung, da die Italiener Leopoldo Nobili und Vincenzo Antinori (1792–1865) in Florenz einige Versuche Faradays wiederholt hatten und ihre in der Zeitschrift Antologia[50] veröffentlichten Ergebnisse vor Faradays Aufsatz in den Philosophical Transactions erschien. [51]

Einheitlichkeit der Elektrizität

Nach seiner Entdeckung, dass Magnetismus Elektrizität zu erzeugen vermag, stellte sich Faraday die Aufgabe nachzuweisen, dass unabhängig davon, wie Elektrizität erzeugt wird, diese immer gleichartig wirkt. Am 25. August 1832 begann er mit den bekannten Elektrizitätsquellen zu arbeiten. Er verglich die Wirkungen von Voltaischer Elektrizität, Reibungselektrizität, Thermoelektrizität, Tierischer Elektrizität und Magnetischer Elektrizität. In seinem am 10. und 17. Januar[52] verlesenen Beitrag gelangte er auf Grund seiner Experimente zum Schluss, „…daß die Elektricität, aus welcher Quelle sie auch entsprungen sey, identisch ist in ihrer Natur“.[53]

Grundgesetze der Elektrolyse

Ende Dezember 1832 stellte sich Faraday die Frage, ob ein elektrischer Strom in der Lage wäre, einen festen Körper – beispielsweise Eis – zu zersetzen. Bei seinen Experimenten stellte er fest, dass sich Eis im Gegensatz zu Wasser wie ein Nichtleiter verhält. Er testete eine Reihe von Substanzen mit niedrigem Schmelzpunkt und beobachtete, dass ein nichtleitender fester Körper nach dem Übergang in die flüssige Phase den Strom leitet und sich unter dem Einfluss des Stromes chemisch zersetzt. Am 23. Mai 1833 sprach er vor der Royal Society Über ein neues Gesetz der Elektrizitätsleitung.[54]

Diese Untersuchungen führten Faraday direkt zu seinen Experimenten über die „elektro-chemische Zersetzung“, die ihn ein Jahr lang beschäftigten. Er sichtete die vorhandenen Ansichten, insbesondere die von Theodor Grotthuß und Davy, und kam zu der Auffassung, dass die Zersetzung im Inneren der Flüssigkeit vor sich geht und die elektrischen Pole nur die Rolle einer Begrenzung der Flüssigkeit spielen.

Unzufrieden mit den ihm für die Beschreibung der chemischen Zersetzung unter dem Einfluss eines elektrischen Stromes zur Verfügung stehenden Begriffen, wandte sich Faraday Anfang 1834 an William Whewell und diskutierte darüber auch mit seinem Arzt Whitlock Nicholl. Letzterer schlug Faraday vor, zur Beschreibung des Vorgangs der elektrochemischen Zersetzung die Begriffe Elektrode für die Ein- und Austrittsflächen des Stromes, Elektrolyse für den Vorgang selbst und Elektrolyt für die betroffene Substanz zu verwenden. Whewell, der die polare Natur des Vorganges kenntlicher machen wollte, prägte für die beiden Elektroden die Termini Anode und Kathode sowie für die betroffenen Teilchen die Begriffe Anion, Kation und Ion. [55] Zu Beginn der siebenten Folge seiner Experimental Researches in Electricity, die er am 9. Januar 1834 der Royal Society vorlegte[56], schlug er die neuen Begriffe zur Beschreibung des Vorgangs der elektrochemischen Zersetzung (Elektrolyse) vor. Im Artikel formulierte er in dieser Arbeit die beiden Grundgesetze der Elektrolyse:

  1. „Die chemische Kraft eines elektrischen Stroms ist direct proportional der absoluten Menge von durchgegangener Elektricität.“
  2. „Die elektro-chemischen Aequivalente sind den gewöhnlichen chemischen gleich.“ [57]

Mit seinen Untersuchungen schloss Faraday den Einfluss von Faktoren, wie beispielsweise der Konzentration der elektrolytischen Lösung oder der Beschaffenheit und Größe der Elektroden, auf den Vorgang der Elektrolyse aus. Nur die Elektrizitätsmenge und die beteiligten chemischen Äquivalente waren von Bedeutung. Es war der Nachweis, dass chemische und elektrische Kräfte eng miteinander verbunden waren und quantitativ zusammenhingen.[58][59][60]

Elektrostatische Abschirmung

Animation zur Reaktion eines Faradayschen Käfigs auf ein äußeres elektrisches Feld; Darstellung der Ladungsverschiebung (Schema).

Mitte Januar 1836 baute Faraday im Hörsaal der Royal Institution einen Würfel mit 12 Fuß (etwa 3,65 Meter) Seitenlänge auf, dessen Kanten aus einem leichten Holzrahmen gebildet wurden. Die Seitenflächen waren netzartig mit Kupferdraht bespannt und mit Papier verkleidet. Der Würfel stand auf vier 5,5 Zoll (etwa 14 Zentimeter) hohen Glasfüßen, um den Kasten vom Untergrund zu isolieren. In den am 15. und 16. Januar 1836[61] durchgeführten Untersuchungen verband er den Würfel mit einer Elektrisiermaschine, um ihn elektrisch zu laden. Anschließend begab sich Faraday mit einem Goldblatt-Elektrometer in das Innere der Anordnung, um die möglicherweise in der Luft induzierte Elektrizität nachzuweisen. Jeder Punkt des Raumes erwies sich jedoch als frei von Elektrizität.[62][63]

Die als Faradayscher Käfig bekannte Anordnung, bei der das elektrische Feld im Inneren eines geschlossenen, leitfähigen Körpers verschwindet, dient heute in der Elektrotechnik zur Abschirmung von elektrostatischen Feldern.

Dielektrika

Faradays Messapparatur zur Bestimmung der Dielektrizitätskonstanten eines Stoffes bestand aus zwei solchen identischen Kugelkondensatoren, von denen einer mit einem Dielektrikum befüllt wurde.

1837 dachte Faraday darüber nach, auf welche Weise sich die elektrische Kraftwirkung durch den Raum ausbreitet. Der Gedanke an eine Fernwirkung der elektrischen Kräfte, wie ihn das Coulombsche Gesetz implizierte, bereitete ihm Unbehagen. Er vermutete hingegen, dass der Raum bei der Kraftübertragung eine Rolle spielen und eine Abhängigkeit vom Raum füllenden Medium existieren müsse. Faraday begann den Einfluss von Isolatoren systematisch zu untersuchen und entwarf eine Versuchsanordnung aus zwei identischen Kugelkondensatoren (siehe nebenstehende Abbildung). Diese Kugelkondensatoren bestanden ihrerseits aus zwei mit einem Abstand von drei Zentimetern ineinandergestellten Messingkugeln. Die Kugeln waren durch einen mit isolierendem Schellack überzogenen Messinggriff miteinander verbunden und bildeten eine Leidener Flasche. Faraday lud zunächst einen der beiden Kondensatoren auf, brachte ihn anschließend mit dem anderen in elektrischen Kontakt und überzeugte sich mit einer selbstgebauten Coulombschen Drehwaage, dass nach dem Ladungsausgleich beide Kondensatoren die gleiche Ladung trugen. Anschließend füllte er den Luftraum des einen Kondensators mit einem Isolator und wiederholte den Versuch. Seine erneute Messung ergab, dass der Kondensator mit dem Isolator die größere Ladung trug. Er wiederholte das Experiment mit verschiedenen Stoffen. Faraday erhielt ein quantitatives Maß für den Einfluss der Isolatoren auf die Kapazität der Kugeln, das er „specific inductive capacity“ nannte, die Dielektrizitätskonstante. [64] Für eine nichtleitende Substanz, die sich zwischen zwei Leitern befindet, hatte Whewell Ende 1836[65] den Begriff Dielektrikum vorgeschlagen, der von Faraday auch genutzt wurde.[66] Faraday erklärte sein experimentelles Ergebnis mit einer Polarisation der Teilchen innerhalb der Isolatoren, bei der die Wirkung von Teilchen zu Teilchen weitergegeben wird und dehnte diese Idee auch auf den Transport der Elektrizität innerhalb von Leitern aus.[67]

Erschöpfung und Erholung

Anfang 1839 fasste Faraday seine zwischen November 1831 und Juni 1838 in den Philosophical Transactions erschienenen Artikel über seine Untersuchungen über Elektrizität unter dem Titel Experimental Researches in Electricity zusammen.

Von August bis November 1839 führte Faraday Untersuchungen zur Funktionsweise der Voltaschen Säule durch, die er im Dezember 1839 unter dem Titel Über die Quelle der Kraft in der Volta’schen Säule[68][69] veröffentlichte. Darin trat er mit zahlreichen experimentellen Belegen der Voltaischen Kontakttheorie entgegen.

Ende 1839 erlitt Faraday einen schweren gesundheitlichen Zusammenbruch, den er auf Überarbeitung zurückführte, und dessen Symptome Kopfschmerzen, Schwindelgefühl und zeitweiliger Gedächtnisverlust waren. Sein Arzt Peter Mere Latham (1789–1875) riet ihm, sich zeitweilig von seinen zahlreichen Verpflichtungen entbinden zu lassen und sich in Brighton zu erholen.[70][71]

Faraday arbeitete die nächsten Jahre nur noch sporadisch in seinem Labor. Im Januar und Februar 1840 führte er an fünf Tagen seine Untersuchungen an der Voltaschen Säule fort. Im August und September experimentierte er nochmals an fünf Tagen. Nach dem 14. September 1840 schrieb er für etwa zwanzig Monate bis zum 1. Juli 1842 keinen einzigen Eintrag in sein Labortagebuch. Ende 1840 erkannten die Manager der Royal Institution die Ernsthaftigkeit von Faradays Erkrankung und beurlaubten ihn bis zu seiner vollständigen Genesung. Fast ein Jahr lang hielt er keine Vorlesungen. Gemeinsam mit seiner Frau, deren Bruder George Barnard (1807–1890) und dessen Frau Emma begab er sich am 30. Juni 1841 auf eine dreimonatige Erholungsreise in die Schweiz, wo er in den Berner Alpen ausgedehnte Wanderungen unternahm.

1840 hatte William George Armstrong entdeckt, dass beim Ausströmen von Wasserdampf unter hohem Druck in die Luft Elektrizität erzeugt wird. Im Sommer 1842 begann Faraday nach der Ursache der Elektrizität zu forschen. Er konnte nachweisen, dass es sich um Reibungselektrizität handelte.[72] Nach Abschluss dieser Arbeiten im Januar 1843 schloss sich eine weitere längere Phase an, in der er kaum experimentierte. Erst ab dem 23. Mai 1844 begann Faraday erneut mit Versuchen, Gase in den flüssigen und festen Zustand zu überführen, die über ein Jahr andauerten. Er knüpfte dabei an seine Experimente von 1823 an. Es gelang ihm sechs Gase in Flüssigkeiten umzuwandeln und sieben, darunter Ammoniak, Distickstoffmonoxid und Schwefelwasserstoff, in den festen Zustand zu überführen.[73]

In dieser Zeit schien Faraday Zweifel daran zu haben, ob er weiterhin wichtige Beiträge als Naturforscher leisten könne. Er stellte die 15. bis 18. Folge seiner Elektrizitätsuntersuchungen gemeinsam mit etwa 30 weiteren Arbeiten zum zweiten Band der Experimental Researches in Electricity zusammen, der Ende 1844 erschien. [74]

Untersuchungen über Elektrizität (1845 bis 1855)

Magnetismus und Licht

Im Juni 1845 nahm Faraday am Jahrestreffen der British Association for the Advancement of Science in Cambridge teil. Dort begegnete er dem jungen William Thomson, dem späteren Lord Kelvin. Anfang August erhielt Faraday von Thomson einen Brief, in dem sich dieser nach dem Einfluss eines durchlässigen Nichtleiters auf polarisiertes Licht erkundigte.[75] Faraday erwiderte[76], dass er 1833 ergebnislos derartige Versuche durchgeführt habe und versprach, sich der Frage nochmals zuzuwenden. Mit einer leuchtstarken Argand-Lampe wiederholte er Ende August bis Anfang September mit verschiedenen Materialien seine Versuche, erzielte jedoch keinen Effekt. Der Effekt, nach dem Faraday gesucht hatte, der elektrooptische Kerr-Effekt, wurde erst dreißig Jahre später durch John Kerr nachgewiesen.

Am 13. September 1845 schickte Faraday polarisiertes Licht durch die zuvor benutzten Materialien, die er dem Einfluss eines starken Magneten aussetzte. Die ersten Versuche mit Luft und Flintglas erbrachten keine Ergebnisse. Als er ein im Rahmen seiner Glasexperimente in den 1820er Jahren hergestelltes Bleiborat-Glas benutzte, fand er beim Durchgang eine schwache, aber erkennbare Drehung der Polarisationsebene, wenn er den Lichtstrahl parallel zu den Magnetfeldlinien ausrichtete. Er setzte seine Experimente fort und wurde zunächst bei einer weiteren Glasprobe fündig, bevor er den Effekt an weiteren Materialien, darunter Flintglas, Kronglas, Terpentinöl, Halitkristall, Wasser und Ethanol, nachweisen konnte. Faraday hatte den Nachweis erbracht, dass Licht und Magnetismus zwei miteinander verbundene physikalische Phänomene sind. Seine Ergebnisse veröffentlichte er unter dem Titel Über die Magnetisierung des Lichts und die Belichtung der Magnetkraftlinien.[77] Der von Faraday gefundene magnetooptische Effekt wird als Faraday-Effekt bezeichnet.

Faraday stellte sich sofort die Frage, ob auch der umgekehrte Effekt existiert und Licht etwas elektrisieren oder magnetisieren könne. Ein Versuch dazu, bei dem er eine Drahtspule dem Sonnenlicht aussetzte, scheiterte jedoch.

Während einer Freitagabendvorlesung Anfang April 1846 äußerte Faraday einige Spekulationen über „Schwingungsstrahlungen“, die er zwei Wochen später in einem Brief an das Philosophical Magazine schriftlich niederlegte.[78] In ihr skizzierte er die Möglichkeit, dass Licht durch Schwingungen von Kraftlinien entstehen könnte. Faradays Spekulation war eine der Anregungen für James Clerk Maxwell bei der Entwicklung seiner elektromagnetischen Theorie des Lichtes, die Maxwell 18 Jahre später formulierte. [79]

Magnetische Stoffeigenschaften

Faradays anschauliche Darstellung des Verlaufs der magnetischen Feldlinien in einem paramagnetischen (P) und einem diamagnetischen (D) Körper.

Die Experimente mit polarisiertem Licht zeigten Faraday, dass ein nichtmagnetischer Stoff durch Magnetismus beeinflusst werden kann. Für seine weiteren Experimente lieh er sich einen starken Elektromagneten von der Royal Military Academy in Woolwich aus. Er befestigte die Bleiboratglasprobe an zwei Seidenfäden und hängte sie zwischen die zugespitzten Polschuhe des Elektromagneten. Als er den elektrischen Stromkreis schloss, beobachtete er, dass sich die Glasprobe von den Polschuhen fortbewegte und sich senkrecht zur gedachten Verbindungslinie zwischen den Polschuhen ausrichtete. Sie verhielt sich damit anders als magnetische Materialien, die sich entlang der Verbindungslinie ausrichteten. Faraday fand schnell eine Vielzahl von Materialien, die sich wie seine Glasprobe verhielten, darunter Holz, Olivenöl, Apfel, Rindfleisch und Blut. Die deutlichsten Effekte erzielte er mit einem Bismutbarren. In Analogie zum Begriff „dielektrisch“ bezeichnete Faraday diese Stoffe am 18. September 1845 in seinem Labortagebuch als „dimagnetisch“.[80] Erneut half Whewell Faraday bei der Begriffsbildung. Whewell korrigierte die von Faraday benutzte Vorsilbe in dia für ‚durch‘, da die Wirkung durch die Körper hindurch stattfand („diamagnetisch“) und schlug vor, alle Substanzen, die sich nicht so verhielten, als „paramagnetisch“ zu bezeichnen.[81] In seinem Labortagebuch benutzte Faraday in diesem Zusammenhang am 7. November erstmals den Begriff „Magnetfeld“.[82] Faradays Entdeckung des Diamagnetismus führte zur Herausbildung der Magnetochemie, die sich mit den magnetischen Eigenschaften von Materialien beschäftigt.[83][84]

Elektrizität und Gravitation

Faradays Interesse für Gravitation reichte bis in die Mitte der 1830er Jahre zurück. Ende 1836 las er eine Arbeit des Italieners Ottaviano Fabrizio Mossotti, in der Mossotti die Gravitation auf elektrische Kräfte zurückführte.[85] Faraday war anfangs von der Arbeit begeistert[86], ließ sie ins Englische übersetzen und sprach in einer Freitagabendvorlesung über sie. Später verwarf er Mossottis Erklärung, da er zu der Überzeugung gelangte, dass die Unterschiede, wie die Schwerkraft gegenüber anderen Kräften wirkt, zu groß seien. In den nächsten Jahren spekulierte Faraday häufig darüber wie die Schwerkraft mit anderen Kräften in Beziehung steht. Im März 1849 begann er zu überlegen, wie man einen Zusammenhang zwischen Gravitation und Elektrizität experimentell nachweisen könnte. Die Gravitation stellte er sich als eine entgegengesetzte Kraft vor, bei der ein Testkörper positiv ist wenn er sich zur Erde hinbewegt und negativ wenn er sich von ihr wegbewegt. Er stellte die These auf, dass diese beiden Bewegungen mit entgegengesetzten elektrischen Zuständen verbunden sind. Für seine Versuche konstruierte Faraday eine Drahtspule, die er mit einem Galvanometer verband und aus großer Höhe fallen ließ. Bei keiner Messung konnte er einen Effekt nachweisen. Trotz des negativen Ausganges der Versuche beschrieb er seine Bemühungen in der Baker-Vorlesung vom 28. November 1850.[87]

Im Februar 1859 begann Faraday erneut eine Folge von Experimenten, mit denen er einen Zusammenhang zwischen Gravitation und Elektrizität nachzuweisen hoffte. Aufgrund des zu erwartenden geringen Effektes benutzte er einige hundert Kilogramm schwere Bleimassen, die er vom 50 Meter hohen Schrotturm in Lambeth fallen ließ. Mit anderen Experimenten hoffte er eine Temperaturänderung beim Heben und Senken einer Masse nachweisen zu können. Am 9. Juli 1859 brach Faraday die Versuche erfolglos ab. Über die Versuche verfasste er den Aufsatz Note on the Possible Relation of Gravity with Electricity or Heat, den er am 16. April 1860[88] fertigstellte und der wie gewohnt in den Philosophical Transactions erscheinen sollte. George Gabriel Stokes befand, dass die Arbeit nicht veröffentlichungswürdig sei und empfahl Faraday, seinen Artikel zurückzuziehen, da er nur negative Ergebnisse vorzuweisen habe[89], was dieser nach Erhalt von Stokes Brief umgehend tat.[90][91]

Popularisierung der Naturforschung

Lithografie von Alexander Blaikley (1816–1903), die Michael Faraday am 27. Dezember 1855 bei einer seiner Weihnachtsvorlesungen zeigt, an der auch Prinz Albert und Prinz Alfred teilnahmen.

Kurz nach seiner Ernennung zum Labordirektor der Royal Institution Anfang 1825 öffnete Faraday die Laboratorien des Instituts für die Treffen der Institutsmitglieder. An drei bis vier Freitagabenden wollte er vor interessierten Mitgliedern von Experimenten begleitete Chemievorträge abhalten. Aus diesen informellen Treffen entwickelte er das Konzept der regelmäßig stattfindenden Freitagabendvorlesungen, bei denen Themen aus Wissenschaft und Technik für Laien verständlich dargestellt werden sollten. Bei der ersten Freitagabendvorlesung am 3. Februar 1826 sprach Faraday über Kautschuk. Von den 17 Vorlesungen des ersten Jahres hielt er sechs zu Themen wie Isambard Kingdom Brunels Gasverflüssiger, Lithografie und den Thames Tunnel. Nach Faradays Ansicht sollten die Vorlesungen Spaß machen, unterhalten, bilden und vor allem anregend sein. Seine Vorlesungen wurden auf Grund der schlichten Vortragsweise sehr populär und waren stets gut besucht. Als Sekretär des Komitees für die „Weekly Evening Meetings“ sorgte Faraday dafür, dass die Vorträge in der Literary Gazette und im Philosophical Magazin veröffentlicht wurden und auf diese Weise einem noch breiteren Publikum zugänglich waren. [92][93][94]

Neben den Freitagabendvorlesungen wurde zum Jahreswechsel 1825/26 erstmals eine Weihnachtsvorlesung abgehalten, die sich speziell an jugendliche Hörer richtete. Bis Anfang der 1860er Jahre prägte Faraday die Ausgestaltung der Weihnachtsvorlesungen wesentlich. Von 1827 an war er für insgesamt 19 Folgen verantwortlich, die meist aus sechs Einzelvorlesungen bestanden. 1860/61 nutzte er seine Notizen der bereits 1848/49 abgehaltenen Vorlesung mit dem Titel Chemical History of a Candle (Naturgeschichte einer Kerze). Auf Betreiben von William Crookes wurde Faradays Weihnachtsvorlesung mitgeschrieben und erschien als sechsteilige Artikelfolge in Crookes Chemical News. Die kurze Zeit später erschienene Buchfassung gilt als eines der erfolgreichsten populärwissenschaftlichen Bücher und wurde in zahlreiche Sprachen übersetzt.[95]

Im öffentlichen Dienst

Einer der beiden Leuchttürme bei Trinity Buoy Wharf, die von Faraday für seine Experimente genutzt wurden.

Neben seiner Forschungs- und Vorlesungstätigkeit war Faraday in vielfältiger Weise für den britischen Staat tätig. Im Sommer 1829 wandte sich Percy Drummond († 1843), Lieutenant Governor der Royal Military Academy in Woolwich, an Faraday und fragte ihn, ob er bereit sei, als Nachfolger des Geologen John MacCulloch (1773–1835) den Posten des Professors für Chemie an der Akademie zu übernehmen. Nach längeren Verhandlungen, bei denen es vorwiegend um seine Pflichten und die Bezahlung ging, sagte Faraday zu. Bis 1852 hielt er in Woolwich jährlich 25 Vorlesungen.[96]

Ab dem 4. Februar 1836 war Faraday als wissenschaftlicher Berater für die Schifffahrtsbehörde Trinity House tätig, die unter anderem die englischen Leuchttürme betreibt. Er war verantwortlich für die chemische Analyse der beim Betrieb der Leuchttürme eingesetzten Materialien und begutachtete neue Beleuchtungssysteme, die Trinity House für den Einsatz vorgeschlagen wurden. Faraday sorgte für die Modernisierung der englischen Leuchttürme nach französischem Vorbild, die zur Verbesserung der Lichtstärke Fresnel-Linsen einsetzten, und begleitete die ersten Versuche zu ihrer Elektrifizierung. In Blackwall an der Themse gab es zwei speziell für ihn errichtete Leuchttürme, in denen er seine Untersuchungen durchführte.[97][98]

Im Auftrag der Regierung war Faraday an der Untersuchung zweier heikler Unfälle beteiligt. Am 13. April 1843 zerstörte eine Explosion die vom Ordnance Office geführte Schießpulverfabrik in Waltham Abbey (Essex), woraufhin Faraday mit der Ursachenanalyse betraut wurde. In seinem Bericht an den Labordirektor der Militärakademie von Woolwich James Pattison Cockburn (1779?–1847) zählte er mehrere mögliche Ursachen auf und gab Ratschläge, wie diese Probleme zukünftig vermieden werden könnten.[99] Gemeinsam mit Charles Lyell und Samuel Stutchbury (1798–1859) erhielt er im Oktober 1844 vom Home Office den Auftrag, die Kohlenstaubexplosion in der Haswell-Grube in Durham zu untersuchen, bei der am 28. September 95 Menschen ums Leben gekommen waren. Lyell und Faraday erkannten, dass der Kohlenstaub eine wesentliche Rolle bei der Explosion gespielt hatte und empfahlen die Einführung eines besseren Bewetterungsystems.[100]

Ein nicht unerheblicher Teil Faradays beratender Tätigkeit befasste sich mit der Konservierung von Gegenständen und Gebäuden. Ab 1853 beriet er das Select Committee on the National Gallery bei der Konservierung von Gemälden. Beispielsweise untersuchte er den Einfluss der Gasbeleuchtung auf Gemälde. Anfang 1856 wurde Faraday in die Royal Commission berufen, die sich mit der Zukunft des Standortes der National Gallery befasste. Im Auftrag von Thomas Leverton Donaldson (1795–1885) untersuchte er für das British Museum, ob die Elgin Marbles ursprünglich bemalt waren. Mitte 1859 bat ihn das Metropolitan Board of Works um ein Urteil darüber, welches der zur Behandlung des zersetzenden Einflusses der schwefelhaltigen Luft auf den Kalkstein des kürzlich wiedererbauten Houses of Parliament am wirksamsten wäre. [101]

Religiöses Wirken

Auf solchen Karten vermerkte Faraday die Bibelstellen aus denen er vortragen wollte.

Faraday war ein zutiefst religiöser Mensch. Sein Vater gehörte der kleinen christlichen Sekte der Sandemanianer an, die sich Ende der 1720er von der Church of Scotland losgesagt hatten. Sie gründeten ihren Glauben und dessen Ausübung auf eine wörtliche Auslegung der Bibel. Im Großraum London gab es zur damaligen Zeit etwa 100 und in ganz Großbritannien etwa 1.000 Sandemanianer. Bereits als Kind begleitete Faraday seinen Vater zu den sonntäglichen Predigten. Kurz nach seiner Hochzeit mit Sarah Barnard, die ebenfalls Mitglied der Sandemanianer war und deren Vater der Gemeinde als Ältester („Elder“) diente, legte er am 15. Juli 1821 seinen Eid ab und wurde Mitglied.[102]

Als Zeichen ihrer hohen Wertschätzung wählte die Londoner Gemeinde Faraday am 1. Juli 1832 zum Diakon und am 15. Oktober 1840 zu einem der drei Ältesten.[103] In den folgenden dreieinhalb Jahren gehörte es zu seinen Verpflichtungen, an jedem zweiten Sonntag die Predigt abzuhalten, auf die er sich genauso sorgfältig wie auf seine Vorlesungen vorbereitete. Am 31. März 1844 wurde Faraday bis zum 5. Mai aus der Gemeinde ausgeschlossen.[104] Die Gründe hierfür sind nicht ganz geklärt, sind aber nicht in einer persönlichen Verfehlung Faradays zu suchen, sondern auf eine Kontroverse innerhalb der Sandemanianer zurückzuführen, da neben Faraday zu dieser Zeit auch zahlreiche weitere Mitglieder ausgeschlossen wurden.[105] In seine Position als Ältester wurde er erst am 21. Oktober 1860 wiedergewählt.[106] Bis 1864 war Faraday wieder regelmäßig für die Predigten zuständig und erhielt den Kontakt zu anderen sandemanianischen Gemeinden, so beipielsweise in Chesterfield, Glasgow und Dundee, aufrecht. Seine Predigten bestanden aus einer Reihe von Zitaten aus dem Alten und dem Neuen Testament, die er kommentierte.[107] Seine religiösen Ansichten waren für ihn eine sehr private Angelegenheit und er äußerte sich nur selten gegenüber seinen Briefpartnern oder in der Öffentlichkeit darüber.[108]

Letzte Jahre

Das Haus der Faradays in Hampton Court Green

Der dritte und letzte Band der Experimental Researches in Electricity, den Faraday Anfang 1855 zusammenstellte, umfasste alle seine seit 1846 in den Philosophical Transactions veröffentlichten Arbeiten. Zusätzlich nahm er zwei im Philosophical Magazine publizierte Artikel auf, die an die 29. Folge der Experimental Researches in Electricity anschlossen und seine charakteristische Abschnittsnummerierung fortgesetzten. Einige kürzere Artikel ergänzten den Band.

Durch Vermittlung von Prinz Albert bezogen die Faradays im September 1858 ein Haus in Hampton Court Green, das Königin Victoria gehörte und sich in unmittelbarer Nähe des Hampton Court Palace befand. Im Oktober 1861 bat der siebzigjährige Faraday die Manager der Royal Institution um seine Entlassung aus dem Institutsdienst. Diese lehnten sein Ersuchen jedoch ab und erließen ihm nur die Verantwortung für die Weihnachtsvorlesungen.

Am 25. November 1861 begann Faraday eine letzte Versuchsreihe, bei der er mit einem von Carl August von Steinheil konstruierten Spektroskop die Auswirkungen auf das Lichtspektrum einer Flamme untersuchte, die sich in einem Magnetfeld befand. Seinen letzten Eintrag im Labortagebuch machte er am 12. März 1862.[109] Die Versuche blieben aufgrund der zu unempfindlichen Messanordnung erfolglos, der Zeeman-Effekt wurde erst 1896 entdeckt.

Am 20. Juni 1862 hielt Faraday vor über 800 Zuhörern seinen letzten Freitagabendvortrag On Gas Furnaces (Über Gasöfen) und beendete seine fast vier Jahrzehnte andauernde Vortragstätigkeit für die Royal Institution. Im Frühjahr 1865 wurde er auf einmütigen Beschluß der Manager der Royal Institution von allen seinen Verpflichtungen entbunden. Bis zum Mai 1865 stand er mit seinem Rat noch der Schifffahrtsbehörde zur Verfügung.

Faraday starb am 25. August 1867 in seinem Haus in Hampton Court und wurde fünf Tage später auf dem Highgate Cemetery begraben.

Rezeption und Nachwirkung

Auszeichnungen und Würdigung

Faradays Biograph Henry Bence Jones verzeichnet insgesamt 95 Ehrentitel und Auszeichnungen.[110] Die erste Würdigung durch eine Gelehrtengesellschaft wurde Faraday 1823 durch die Cambridge Philosophical Society zuteil, die ihn als ihr Ehrenmitglied aufnahm. Auf Bestreben von Jean-Baptiste André Dumas wurde Faraday 1844 als eines der acht Auslandsmitglieder in die Académie des sciences gewählt.[111] 1864 wurde er letztmalig durch die Società Reale di Napoli geehrt, die ihn als assoziiertes Auslandsmitglied führte.[112]

Die Royal Society zeichnete ihn mit der Copley-Medaille (1832 und 1838), der Royal Medal (1835 und 1846) und der Rumford-Medaille (1846) aus. Das Angebot, Präsident der Royal Society zu werden, lehnte Faraday zweimal (1848 und 1858) ab.[113] 1842 erhielt Faraday den preußischen Verdienstorden Pour le Mérite.

Der in Paris tagende Congrès international d'électriciens (Internationaler Elektrikerkongress) beschloss am 22. September 1881, die Einheit für die Kapazität zu seinen Ehren Farad zu nennen.[114] Ebenso sind nach ihm der Mondkrater Faraday und der Asteroid Faraday benannt. William Whewell ehrte Faraday und Davy mit der Benennung einer seiner „Epochen der Chemie“.[115]

Am 5. Juni 1991[116] emittierte die Bank of England eine neue 20-Pfund-Sterling-Banknote mit dem Bildnis von Faraday, die bis zum 28. Februar 2001[117] gültiges Zahlungsmittel war.

Schriften

Englische Erstausgaben

  • Chemical Manipulation: Being Instructions to Students in Chemistry on the Methods of Performing Experiments of Demonstration or of Research, with Accuracy and Success. 1. Auflage, W. Phillips, London 1827, Online.
  • Experimental Researches in Electricity. 3 Bände, R. Taylor & W. Francis, London 1839–1855, Band 1, Band 2, Band 3.
  • Experimental Researches in Chemistry and Physics. R. Taylor & W. Francis, London 1859, Online.
  • A Course of Six Lectures on the Various Forces of Matter, and Their Relations To Each Other. Richard Griffin & Co., London Glasgow 1860, Online.
  • A Course of Six Lectures on the Chemical History of a Candle: To Which is Added a Lecture on Platinum. Harper & Brothers, New York 1861, Online.

Deutsche Erstausgaben

  • Chemische Manipulation oder das eigentlich Practische der sichern Ausführung chemischer Arbeiten und Experimente. Verlag des Landes-Industrie-Comptoir, Weimar 1828, 1832.
  • Experimental-Untersuchungen über Elektricität. Übersetzt von Johann Christian Poggendorff, Herausgegeben von Arthur Joachim von Oettingen, W. Engelmann, Leipzig 1896–1903.
  • Naturgeschichte einer Kerze. Sechs Vorlesungen für die Jugend, aus dem Englischen übertragen von Lüdicke, Robert Oppenheim, Berlin 1871.
  • Die verschiedenen Kräfte der Materie und ihre Beziehungen zu einander. Sechs Vorlesungen für die Jugend, übersetzt von H. Schröder, Robert Oppenheim, Berlin [1872].

Moderne deutsche Ausgaben

  • Experimental-Untersuchungen über Elektricität. Band 1, Harri Deutsch Verlag, 2004, ISBN 3817132921.
  • Experimental-Untersuchungen über Elektricität. Band 2, Harri Deutsch Verlag, 2004, ISBN 381713293X.
  • Experimental-Untersuchungen über Elektricität. Band 3, Harri Deutsch Verlag, 2004, ISBN 3817132948.

Literatur

Biographien

Klassische

Moderne

  • Geoffrey Cantor: Michael Faraday: Sandemanian and Scientist. A Study of Science and Religion in the Nineteenth Century. Macmillan, London 1991.
  • Geoffrey Cantor, David Gooding, Frank A. J. L. James: Michael Faraday. Kumarian Press Inc., 1996, ISBN 978-1573925563.
  • James Hamilton: A Life of Discovery: Michael Faraday, Giant of the Scientific Revolution. Random House , New York 2004, ISBN 1400060168.
  • Alan Hirshfeld The Electric Life of Michael Faraday. Raincoast Books, 2006, ISBN 9781551929453.
  • Jost Lemmerich: Michael Faraday 1791–1867. Erforscher der Elektrizität. C.H. Beck, München 1991.
  • John Meurig Thomas: Michael Faraday and the Royal Institution: The Genius of Man and Place. Adam Hilger, Bristol 1991, ISBN 0750301457.
  • Leslie Pearce Williams: Michael Faraday: A Biography. Chapman and Hall, London 1965

Briefwechsel

  • Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday, 6 Bände, Institution of Electrical Engineers, London 1991–2010.
    • Band 1: 1811–1831. Institution of Electrical Engineers, London 1991, ISBN 0863412483.
    • Band 2: 1832–1840. Institution of Electrical Engineers, London 1993, ISBN 0863412491.
    • Band 3: 1841–1848. Institution of Electrical Engineers, London 1996, ISBN 0863412505.
    • Band 4: 1849–1855. Institution of Electrical Engineers, London 1999, ISBN 0863412513.
    • Band 5: 1855–1860. Institution of Electrical Engineers, London 2008, ISBN 9780863418235.
    • Band 6: 1860–1867. Institution of Electrical Engineers, London 2010, ISBN 9780863419577.
  • Georg Wilhelm August Kahlbaum, Francis Vernon Darbishire (Hrsg.): The Letters of Faraday and Schoenbein, 1836–1862: With Notes, Comments and References to Contemporary Letters. B. Schwabe, Bâle; Williams & Norgate, London 1899, Online.
  • Leslie Pearce Williams (Hrsg.): The Selected Correspondence of Michael Faraday. Cambridge University Press, 1971.

Labortagebücher

  • Thomas Martin (Hrsg.) Faraday's diary: being the various philosophical notes of experimental investigation made by Michael Faraday … during the years 1820–1862, 7 Bände, George Bell & Sons, London 1932–1936.
    • Band 1: Sept, 1820–June 11, 1832. G. Bell & Sons, London 1932.
    • Band 2: Aug 25, 1832–Feb 29, 1836. G. Bell & Sons, London 1932.
    • Band 3: May 26, 1836–Nov 9, 1839. G. Bell & Sons, London 1933.
    • Band 4: Nov 12, 1839–June 26, 1847. G. Bell & Sons, London 1933.
    • Band 5: Sept 6, 1847–Oct 17, 1851. G. Bell & Sons, London 1934.
    • Band 6: Nov 11, 1851–Nov 5, 1855. G. Bell & Sons, London 1935.
    • Band 7: Nov 24, 1855–Mar 12, 1862. G. Bell & Sons, London 1936.

Zur Rezeption seines Werkes

  • Geoffrey Cantor: The scientist as a hero: public images of Michael Faraday. In: Michael Shortland, Richard R. Yeo (Hrsg.): Telling lives in science: essays on scientific biography. Cambridge University Press, 1996, ISBN 0521433231, S. 171–194.
  • Geoffrey Cantor: Michael Faraday’s religion and its relation to his science. In: Endeavour. Band 22, Nummer 3, 1998, S. 121–124, .
  • Michael Faraday. In: Michael J. A. Howe: Genius Explained. Cambridge University Press, 2001, ISBN 0521008492, S. 84–107.
  • Alan E. Jeffreys: Michael Faraday: A List of his Lectures and Published Writings. Chapman and Hall: London 1960.
  • Alice Jenkins: Michael Faraday's mental exercises: An artisan essay-circle in Regency London. Liverpool University Press, Liverpool 2008, ISBN 978-1-84631-140-6.
  • David Keith Chalmers MacDonald: Faraday, Maxwell, and Kelvin. Science Study Series, Anchor Books, 1964.
  • James Frederic Riley: The Hammer and the Anvil: A Background to Michael Faraday. Dalesman Publishing Co., Clapham 1954.
  • J[ames] R[orie] (Hrsg.): Selected Exhortations Delivered to Various Churches of Christ by the Late Michael Faraday, Wm. Buchanan, John M. Baxter, and Alex Moir. John Leng and Co., Dundee 1910

Einzelnachweise

  1. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 1, S. XXVII
  2. Michael J. A. Howe: Genius Explained. S. 92–94.
  3. James Hamilton: A Life of Discovery: Michael Faraday, Giant of the Scientific Revolution. S. 10 und S. 401–404.
  4. John Tyndall: Faraday und seine Entdeckungen. S. 66.
  5. Frank A. J. L. James: The Tales of Benjamin Abbott: A Source for the Early Life of Michael Faraday. In: The British Journal for the History of Science. Band 25, Nummer 2, 1992, S. 229–240.
  6. John Tyndall: Faraday und seine Entdeckungen. S. 167.
  7. John Tyndall: Faraday und seine Entdeckungen. S. 171.
  8. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 1, S. XXX
  9. John Tyndall: Faraday und seine Entdeckungen. S. 172.
  10. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 1, S. XXXI
  11. Silvanus Phillips Thompson: Michael Faraday, His Life and Work. S. 13.
  12. James Hamilton: A Life of Discovery: Michael Faraday, Giant of the Scientific Revolution. S. 62.
  13. Die von Davy und Faraday genutzte Apparatur (abgerufen am 3. März 2010)
  14. John Tyndall: Faraday und seine Entdeckungen. S. 184.
  15. Alice Jenkins: Michael Faraday's mental exercises: An artisan essay-circle in Regency London. S. 1.
  16. John Tyndall: Faraday und seine Entdeckungen. S. 186.
  17. Henry Bence Jones: The Life and Letters of Michael Faraday. Band 1, S. 276
  18. James Hamilton: A Life of Discovery: Michael Faraday, Giant of the Scientific Revolution. S. 151–152.
  19. M. Faraday: An Analysis of Wootz, or Indian Steel. In: Quarterly Journal of Science, Literature and the Arts. Band 7, 1819, S. 288–290, Online.
  20. J. Stodart, M. Faraday: Experiments on the Alloys of Steel Made with a View to Its Improvements. Quarterly Journal of Science, Literature and the Arts. Band 9, 1820, S. 319–330, Nachdruck.
  21. J. Stodart, M. Faraday: On the Alloys of Steel. In: Philosophical Transactions of the Royal Society. Band 112, 1822, S. 253–270, doi:10.1098/rstl.1822.0021.
  22. Robert Hadfield: A Research on Faraday's „Steel and Alloys“. In: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. Band 230, 1932, S. 221–292, doi:10.1098/rsta.1932.0007.
  23. M. Faraday: On Two New Compounds of Chlorine and Carbon, and on a New Compound of Iodine, Carbon, and Hydrogen. In: Philosophical Transactions of the Royal Society. Band 111, 1821, S. 47–74, doi:10.1098/rstl.1821.0007.
  24. John Meurig Thomas: Michael Faraday and the Royal Institution: The Genius of Man and Place. S. 25.
  25. [Anonym]: Historical Sketch of Electro-Magnetism. In: Annals of Philosophy. Neue Serie, Band 2, 1821, S. 195–200 und S. 274–290.
  26. Silvanus Phillips Thompson: Michael Faraday, His Life and Work. S. 51.
  27. On some new Electro-Magnetical Motions, and on the Theory of Magnetism In: Quarterly Journal of Science. Band 12, 1822, S. 74–96, Online.
  28. Historical Statement respecting Electro-Magnetic Rotation. In: Quarterly Journal of Science, Literature and the Arts. Band 15, 1823 S. 288–292, Online.
  29. On Hydrate of Chlorine. In: Quarterly Journal of Science, Literature and the Arts. Band 15, 1823 S. 71–74, Online
  30. M. Faraday, H. Davy: On Fluid Chlorine. In: Philosophical Transactions of the Royal Society. Band 113, 1823, S. 160–165, doi:10.1098/rstl.1823.0016.
  31. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 1, S. XXXIII
  32. James Hamilton: A Life of Discovery: Michael Faraday, Giant of the Scientific Revolution. S. 188.
  33. John Meurig Thomas: Michael Faraday and the Royal Institution: The Genius of Man and Place. S. 31–33.
  34. On New Compounds of Carbon and Hydrogen, and on Certain Other Products Obtained during the Decomposition of Oil by Heat. In: Philosophical Transactions of the Royal Society. Band 115, 1825, S. 440–466, doi:10.1098/rstl.1825.0022.
  35. Henry Bence Jones: The Life and Letters of Michael Faraday. Band 1, S. 351
  36. Myles W. Jackson: Spectrum of belief: Joseph von Fraunhofer and the craft of precision optics. MIT Press, 2000, ISBN 0262100843, S. 145–162.
  37. John Tyndall: Faraday und seine Entdeckungen. S. 195.
  38. James Hamilton: A Life of Discovery: Michael Faraday, Giant of the Scientific Revolution. S. 190.
  39. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 1, S. XXXV.
  40. Silvanus Phillips Thompson: Michael Faraday, His Life and Work. S. 101.
  41. John Meurig Thomas: Michael Faraday and the Royal Institution: The Genius of Man and Place. S. 25.
  42. Electro-Magnetic-Current. In: Quarterly Journal of Science, Literature and the Arts. Juli 1825, Band 19, S. 338, Online.
  43. Thomas Martin (Hrsg.): Faraday's diary. Band 1, S. 367–387.
  44. John Meurig Thomas: Michael Faraday and the Royal Institution: The Genius of Man and Place. S. 40–45.
  45. James Hamilton: A Life of Discovery: Michael Faraday, Giant of the Scientific Revolution. S. 245–263.
  46. Friedrich Steinle: Die „Experimental Researches in Electricity“: Eine Übersicht. In: Experimental-Untersuchungen über Elektricität. Band 1, Harri Deutsch Verlag, 2004, ISBN 3817132921, S. XI–XII.
  47. Electricity from Magnetism. In: Brian Scott Baigrie: Electricity and Magnetism: A Historical Perspective. Greenwood Publishing Group, 2007,ISBN 9780313333583, S. 80–84.
  48. Experimental Researches in Electricity. In: Philosophical Transactions of the Royal Society. Band 122, 1832, S. 125–162, doi:10.1098/rstl.1832.0006.
  49. Ronald Anderson: The Referees' Assessment of Faraday's Electromagnetic Induction Paper of 1831. In: Notes and Records of the Royal Society of London. Band 47, Nummer 2, 1993, S. 243–256, doi:10.1098/rsnr.1993.0031.
  50. Sopra la Forza Elettromotrice del Magnetismo In: Antologia. Band 44, 1831, S. 149–161, Online.
  51. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 1, S. XXVI
  52. Experimental Researches in Electricity. Third Series. In: Philosophical Transactions of the Royal Society. Band 123, 1833, S. 23–54, doi:10.1098/rstl.1833.0006.
  53. Dritte Reihe von Experimental-Untersuchungen über Elektricität. In: Annalen der Physik und Chemie. Band 105, 1833, S. 372.
  54. Experimental Researches in Electricity. Fourth Series. In: Philosophical Transactions of the Royal Society. Band 123, 1833, S. 507–522, doi:10.1098/rstl.1833.0022.
  55. S. Ross: Faraday Consults the Scholars: The Origins of the Terms of Electrochemistry. In: Notes and Records of the Royal Society of London. Band 16, Nummer 2, 1961, S. 187–220, doi:10.1098/rsnr.1961.0038.
  56. Experimental Researches in Electricity. Seventh Series. In: Philosophical Transactions of the Royal Society. Band 124, 1834, S. 77–122 doi:10.1098/rstl.1834.0008.
  57. Siebente Reihe von Experimental-Untersuchungen über Elektricität. In: Annalen der Physik und Chemie. Band 109, 1834, S. 481 und 500.
  58. John Meurig Thomas: Michael Faraday and the Royal Institution: The Genius of Man and Place. S. 45–60.
  59. Friedrich Steinle: Die „Experimental Researches in Electricity“: Eine Übersicht. In: Experimental-Untersuchungen über Elektricität. Band 1, Harri Deutsch Verlag, 2004, ISBN 3817132921, S. XIII–XV.
  60. Experiments on Electrolytic Decompensition. In: Brian Scott Baigrie: Electricity and Magnetism: A Historical Perspective. Greenwood Publishing Group, 2007, ISBN 9780313333583, S. 84–88.
  61. Thomas Martin (Hrsg.) Faraday's Diary. Band 2, S. 426–439, Einträge 2808–2874.
  62. Olivier Darrigol: Electrodynamics from Ampère to Einstein. Oxford University Press, 2002, ISBN 0198505930, S. 88.
  63. M. Faraday: On Induction. #1173, 1174. In: Experimental Researches in Electricity. Eleventh Series. In: Philosophical Transactions of the Royal Society. Band 128, 1838, S. 1-40, doi:10.1098/rstl.1838.0002.
  64. Olivier Darrigol: Electrodynamics from Ampère to Einstein. Oxford University Press, 2002, ISBN 0198505930, S. 88–90.
  65. William Whewell an Michael Faraday, 29. Dezember 1836. Brief 960. In: Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 2, S. 398.
  66. #1168 In: Experimental Researches in Electricity. Eleventh Series. In: Philosophical Transactions of the Royal Society. Band 128, 1838, S. 1–40, doi:10.1098/rstl.1838.0002.
  67. John Tyndall: Faraday und seine Entdeckungen. S. 67-68.
  68. Experimental Researches in Electricity. Sixteenth Series. In: Philosophical Transactions of the Royal Society. Band 130, 1840, S. 61–91. doi:10.1098/rstl.1840.0003.
  69. Experimental Researches in Electricity. Seventeenth Series. In: Philosophical Transactions of the Royal Society. Band 130, 1840, S. 93–127, doi:10.1098/rstl.1840.0004.
  70. E. H. Hare: Michael Faraday's loss of memory. In: Proceedings of the Royal Society of Medecine. Band 67, Nummer 7, 1974, S. 617–618.
  71. E. Hare: Michael Faraday's Loss of Memory. In: Proceedings of the Royal Institution. Band 49, 1976, S. 33–52.
  72. Experimental Researches in Electricity. Eighteenth Series. In: Philosophical Transactions of the Royal Society. Band 133, 1843, S. 17–32, doi:10.1098/rstl.1843.0004.
  73. On the Liquefaction and Solidification of Bodies Generally Existing as Gases. In: Philosophical Transactions of the Royal Society. Band 135, 1845, 155–i, doi:10.1098/rstl.1845.0006.
  74. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 3, S. XXV
  75. Thomson an Faraday, 6. August 1845, Brief 1765
  76. Faraday an Thomson, 8. August 1845, Brief 1767
  77. Experimental Researches in Electricity. Nineteenth Series. In: Philosophical Transactions of the Royal Society. Band 136, 1846, S. 1–20, doi:10.1098/rstl.1846.0001.
  78. M. Faraday: Thoughts on Ray-Vibrations. In: Philosophical Magazine. Taylor & Francis, 1846, S. 345–350, Online.
  79. William Berkson: Fields of force: the development of a world view from Faraday to Einstein. Routledge, 1974, ISBN 0710076266, S. 97–100.
  80. Thomas Martin (Hrsg.): Faraday's diary. Band 4, #7576, S. 272.
  81. William Whewell an Michael Faraday, 10. Dezember 1845. Brief 1798. In: Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 3, S. 442.
  82. Thomas Martin (Hrsg.): Faraday's diary. Band 4, #7979, S. 272.
  83. John Meurig Thomas: Michael Faraday and the Royal Institution: The Genius of Man and Place. S. 65–72.
  84. Friedrich Steinle: Die „Experimental Researches in Electricity“: Eine Übersicht. In: Experimental-Untersuchungen über Elektricität. Band 1, Harri Deutsch Verlag, 2004, ISBN 3817132921, S. XIX–XX.
  85. Ottaviano Fabrizio Mossotti: Sur les forces qui régissent la constitution intérieure des corps, aperçu pour servir à la détermination de la cause et des lois de l'action moléculaire. Turin 1836.
  86. Michael Faraday an William Whewell, 13. Dezember 1836. Brief 954. In: Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 2, S. 391
  87. Über den möglichen Zusammenhang der Schwerkraft mit der Elektrizität. The Bakerian Lecture. Experimental Researches in Electricity. Twenty-Fourth Series. In: Philosophical Transactions of the Royal Society. Band 141, 1851, S. 1–6, doi:10.1098/rstl.1851.0001.
  88. Henry Bence Jones: The Life and Letters of Michael Faraday. Band 1, S. 276
  89. George Gabriel Stokes an Michael Faraday, 8. Juni 1860. Brief 3788. In: Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 5, S. 687.
  90. Michael Faraday an George Gabriel Stokes, 11. Juni 1860. Brief 3790. In: Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 5, S. 689.
  91. Cantor G.: Faraday's search for the gravelectric effect. In: Physics Education. Band 26, Nummer 5, Institute of Physics Publishing, 1991, S. 289–295
  92. James Hamilton: A Life of Discovery: Michael Faraday, Giant of the Scientific Revolution. S. 194.
  93. Henry Bence Jones: The Life and Letters of Michael Faraday. Band 1, S. 346, 350
  94. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 2, S. XXVI
  95. Frank A. J. L. James (Hrsg.): Christmas At The Royal Institution: An Anthology of Lectures by M. Faraday, J. Tyndall, R. S. Ball, S. P. Thompson, E. R. Lankester, W. H. Bragg, W. L. Bragg, R. L. Gregory, and I. Stewa. World Scientific, 2008, ISBN 9789812771087, S. XI–XXV.
  96. James Hamilton: A Life of Discovery: Michael Faraday, Giant of the Scientific Revolution. S. 222.
  97. Frank A. J. L. James: ‘the civil-engineer's talent’: Michael Faraday, science, engineering the English lighthouse service, 1836-1865. In: Transactions of the Newcomen Society. Band 70B, 1998, S. 153–160.
  98. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 5, S. XXX–XXXIV
  99. Michael Faraday an James Pattison Cockburn, 20. Juni 2843. Brief 1502. In: Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 4, S. 152–155.
  100. Frank A. J. L. Jamesa; Margaret Ray: Science in the pits: Michael Faraday, Charles Lyell and the home office enquiry into the explosion at Haswell Colliery, country Durham, in 1844. In: History and technology. Band 15, 1999, S. 213–231.
  101. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 5, S. XXVIII–XXX
  102. Geoffrey Cantor: Michael Faraday’s religion and its relation to his science. S. 121.
  103. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 2, S. XXVII.
  104. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 3, S. XXIX.
  105. Geoffrey Cantor: Why was Faraday excluded from the Sandemanians in 1844? In: The British Journal for the History of Science. Band 22, Nummer 4, 1989, S. 433–437, doi:10.1017/S0007087400026388.
  106. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 5, S. XXXIV.
  107. Phillip Eichman: The Christian Character of Michael Faraday as Revealed in His Personal Life and Recorded Sermons. In: Perspectives on Science and Christian Faith. Band 43, 1993, S. 92–95, online
  108. Phillip Eichman: Michael Faraday: Man of God-Man of Science. In: Perspectives on Science and Christian Faith. Band 40, 1988, S. 91–97. online
  109. Thomas Martin (Hrsg.): Faraday's diary. Band 7, S. 462–465.
  110. Henry Bence Jones: The Life and Letters of Michael Faraday. Band 1, S. 341
  111. http://www.academie-sciences.fr/membres/in_memoriam/in_memoriam_liste_alphabetique_F.htm
  112. John Meurig Thomas: Michael Faraday and the Royal Institution: The Genius of Man and Place. S. 215–216.
  113. Frank A. J. L. James (Hrsg.): The Correspondence of Michael Faraday. Band 5, S. XXXVII
  114. Joseph David Everett: Units and Physical Constants. 2. Auflage, Macmillan & Co., 1886, S. 153, Online.
  115. William Whewell: History of the inductive sciences from the earliest to the present time. Band 3, 1837, S. 154-176, Online.
  116. New Design £20 Notes (abgerufen am 21. März 2010)
  117. Withdrawal of Faraday £20 Notes (abgerufen am 21. März 2010)