Zum Inhalt springen

Transport Layer Security

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 6. Februar 2010 um 20:25 Uhr durch 92.72.149.126 (Diskussion) (Es werden bei SSL nur die Anwendungsdaten verschlüsselt - das TLS Record Protocol ist klartext). Sie kann sich erheblich von der aktuellen Version unterscheiden.
SSL im TCP/IP-Protokollstapel
Anwendung HTTPS IMAPS POP3S SMTPS ...
Transport SSL/TLS
TCP
Internet IP
Netzzugang Ethernet Token
Bus
Token
Ring
FDDI ...

Das Transport Layer Security (TLS), bzw. sein Vorgängername Secure Sockets Layer (SSL), ist ein hybrides Verschlüsselungsprotokoll zur sicheren Datenübertragung im Internet. TLS 1.0, 1.1 und 1.2 sind die standardisierten Weiterentwicklungen von SSL 3.0 (TLS 1.0 steht neu für SSL 3.1). SSL wird also nun unter dem Namen TLS weiterentwickelt. In diesem Artikel wird die Abkürzung SSL für beide Bezeichnungen verwendet.

Funktionsweise

Im OSI-Modell ist SSL in Schicht 6 (der Darstellungsschicht) angeordnet. Im TCP/IP Modell ist SSL oberhalb der Transportschicht (zum Beispiel TCP) und unter Anwendungsprotokollen wie HTTP oder SMTP angesiedelt. In den Spezifikationen wird dies dann zum Beispiel als „HTTP over SSL“ bezeichnet. Sollen jedoch beide Protokolle zusammengefasst betrachtet werden, wird üblicherweise ein „S“ für Secure dem Protokoll der Anwendungsschicht angehängt (zum Beispiel HTTPS). SSL arbeitet transparent, so dass es leicht eingesetzt werden kann, um Protokollen ohne eigene Sicherheitsmechanismen abgesicherte Verbindungen zur Verfügung zu stellen. Zudem ist es erweiterbar, um Flexibilität und Zukunftssicherheit bei den verwendeten Verschlüsselungstechniken zu gewährleisten.

SSL-Protokolle in der Übersicht

Das SSL-Protokoll besteht aus zwei Schichten:

SSL Handshake Protocol SSL Change Cipher Spec. Protocol SSL Alert Protocol SSL Application Data Protocol
SSL Record Protocol

SSL Record Protocol

Das SSL Record Protocol ist die untere der beiden Schichten und dient zur Absicherung der Verbindung. Es setzt direkt auf der Transportschicht auf und bietet zwei verschiedene Dienste, die einzeln und gemeinsam genutzt werden können:

Außerdem werden zu sichernde Daten in Blöcke von maximal 65.536 Byte fragmentiert und beim Empfänger wieder zusammengesetzt. Auch können die Daten vor dem Verschlüsseln und vor dem Berechnen der kryptografischen Prüfsumme komprimiert werden. Das Komprimierungsverfahren wird ebenso wie die kryptografischen Schlüssel mit dem SSL Handshake-Protokoll ausgehandelt.

SSL Handshake Protocol

SSL-Handshake mit Zwei-Wege-Authentifizierung mittels Zertifikaten

Das SSL Handshake Protocol baut auf dem SSL Record Protocol auf und erfüllt die folgenden Funktionen, noch bevor die ersten Bits des Anwendungsdatenstromes ausgetauscht wurden:

  • Identifikation und Authentifizierung der Kommunikationspartner auf Basis asymmetrischer Verschlüsselungsverfahren und Public-Key-Kryptografie. Dieser Schritt ist optional. Für gewöhnlich authentifiziert sich aber zumindest der Server gegenüber dem Client.
  • Aushandeln zu benutzender kryptografischer Algorithmen und Schlüssel. TLS unterstützt auch eine unverschlüsselte Übertragung.

Der Handshake selbst kann in vier Phasen unterteilt werden:

Phase Beschreibung
Phase 1: Der Client schickt zum Server ein client_hello, und der Server antwortet dem Client mit einem server_hello.

Die Parameter der Nachrichten sind:

  • die Version (die höchste vom Client unterstützte SSL-Protokoll-Version)
  • eine 32 Byte lange Zufallszahl, die später verwendet wird, um das pre-master-secret zu bilden (sie schützt damit vor Replay-Attacken)
  • eine Session-ID
  • die zu verwendende Cipher Suite (Algorithmen für Schlüsselaustausch, Verschlüsselung und Authentifizierung)
Phase 2: Diese Phase darf nur bei anonymem Key Agreement weggelassen werden.

Der Server identifiziert sich gegenüber dem Client. Hier wird auch das X509v3-Zertifikat zum Client übermittelt. Außerdem kann der Server ein CertificateRequest an den Client schicken.

Phase 3: Diese Phase ist optional.

Hier identifiziert sich der Client gegenüber dem Server. Besitzt der Client kein Zertifikat, antwortete er früher mit einem NoCertificateAlert. TLS-konforme Systeme verwenden diesen Alert jedoch nicht. Der Client versucht außerdem, das Zertifikat, das er vom Server erhalten hat, zu verifizieren (bei Misserfolg wird die Verbindung abgebrochen). Dieses Zertifikat enthält den öffentlichen Schlüssel des Servers. Wird die Cipher-Suite RSA verwendet, so wird das vom Client generierte pre-master-secret mit diesem öffentlichen Schlüssel verschlüsselt und kann vom Server mit dem nur ihm bekannten privaten Schlüssel wieder entschlüsselt werden. Alternativ kann hier auch das Diffie-Hellman-Verfahren verwendet werden, um ein gemeinsames pre-master-secret zu generieren.

Phase 4: Diese Phase schließt den Handshake ab. Aus dem vorhandenen pre-master-secret kann das Master Secret abgeleitet werden und aus diesem der einmalige Session Key. Das ist ein einmalig benutzbarer symmetrischer Schlüssel, der während der Verbindung zum Ver- und Entschlüsseln der Daten genutzt wird. Die Anwendungsdaten, die die Kommunikationspartner sich nun gegenseitig zusenden, werden nur noch verschlüsselt übertragen.

SSL Change Cipher Spec Protocol

Das Change Cipher Spec Protocol besteht nur aus einer einzigen Nachricht. Diese Nachricht ist 1 Byte groß und besitzt den Inhalt 1. Durch diese Nachricht teilt der Sender dem Empfänger mit, dass er in der aktiven Sitzung auf die im Handshake Protocol ausgehandelte Cipher Suite wechselt.

SSL Alert Protocol

Das Alert Protocol unterscheidet etwa zwei Dutzend verschiedene Mitteilungen. Eine davon teilt das Ende der Sitzung mit (close_notify). Andere beziehen sich z. B. auf die Protokollsyntax oder die Gültigkeit der verwendeten Zertifikate. Es wird zwischen Warnungen und Fehlern unterschieden, wobei letztere die Verbindung sofort beenden.

SSL Application Data Protocol

Die Anwendungsdaten werden in Teile zerlegt, komprimiert und in Abhängigkeit vom aktuellen Zustand der Sitzung auch verschlüsselt. Inhaltlich werden sie von TLS/SSL nicht näher interpretiert.

Berechnung des Master Secrets

Aus dem pre-master-secret wird in früheren Protokollversionen mit Hilfe der Hash-Funktionen SHA-1 und MD5, in TLS 1.2 mit Hilfe einer durch eine Cipher Suite spezifizierten Pseudozufallsfunktion das Master Secret berechnet. In diese Berechnung fließen zusätzlich die Zufallszahlen der Phase 1 des Handshakes mit ein. Die Verwendung beider Hash-Funktionen sollte sicherstellen, dass das Master Secret immer noch geschützt ist, falls eine der Funktionen als kompromittiert gilt. In TLS 1.2 wird dieser Ansatz nun durch die flexible Austauschbarkeit der Funktion ersetzt.

Vor- und Nachteile

Der Vorteil des SSL-Protokolls ist die Möglichkeit, jedes höhere Protokoll auf Basis des SSL-Protokolls zu implementieren. Damit ist eine Unabhängigkeit von Anwendungen und Systemen gewährleistet.

Der Nachteil der SSL-verschlüsselten Übertragung besteht darin, dass der Verbindungsaufbau auf Serverseite rechenintensiv und deshalb langsamer ist. Die Verschlüsselung selbst nimmt je nach verwendetem Algorithmus nur noch wenig Rechenzeit in Anspruch. Die verschlüsselten Daten können von transparenten Kompressionsverfahren (etwa auf PPTP-Ebene) kaum mehr komprimiert werden. Als Alternative bietet das TLS-Protokoll ab Version 1.0 die Option, die übertragenen Daten mit zlib zu komprimieren, dies wird jedoch in der Praxis vor allem aus Gründen des erhöhten Rechenaufwands kaum eingesetzt.

SSL verschlüsselt nur die Kommunikation zwischen zwei Stationen. Es sind jedoch auch Szenarien (insbesondere in serviceorientierten Architekturen) denkbar, in denen eine Nachricht über mehrere Stationen gesendet wird. Wenn jede dieser Stationen aber nur einen Teil der Nachricht lesen darf, reicht SSL nicht mehr aus, da jede Station alle Daten der Nachricht entschlüsseln kann. Somit entstehen Sicherheitslücken an jeder Station, die nicht für sie bestimmte Daten entschlüsseln kann.

SSL in der Praxis

SSL-Verschlüsselung wird heute vor allem mit HTTPS eingesetzt. Die meisten Webserver unterstützen TLS1.0, viele auch SSLv2 und SSLv3 mit einer Vielzahl von Verschlüsselungsmethoden, fast alle Browser und Server setzen jedoch bevorzugt TLS mit RSA- und AES- oder Camellia-Verschlüsselung ein. In aktuellen Browsern ist SSLv2 deaktiviert oder führt zu einer Sicherheitswarnung[1], da diese Protokollversion eine Reihe von Sicherheitslücken [2][3] aufweist. TLS 1.1 wird von fast allen aktuellen Browsern unterstützt, ist aber auf Servern so gut wie nirgends verfügbar, da es von der im Unix-Serverbereich als Quasi-Standard eingebundenen OpenSSL-Bibliothek nicht unterstützt wird.

Seit einiger Zeit nutzen immer mehr Webseitenbetreiber Extended-Validation-SSL-Zertifikate (EV-SSL-Zertifikat). In der Adresszeile des Browsers wird zusätzlich ein Feld angezeigt, in dem Zertifikats- und Domaininhaber im Wechsel mit der Zertifizierungsstelle (beispielsweise VeriSign) eingeblendet werden. Zudem wird je nach verwendetem Browser und/oder Add-on die Adresszeile grün eingefärbt. Internetnutzer sollen so noch schneller erkennen, ob die besuchte Webseite echt ist, und besser vor Phishingversuchen geschützt werden.

SSL ist ohne eine zertifikatsbasierte Authentifizierung problematisch, wenn ein Man-In-The-Middle-Angriff erfolgt: Ist der Man-In-The-Middle vor der Übergabe des Schlüssels aktiv, kann er mit beiden Seiten den Schlüssel tauschen und so den gesamten Datenverkehr im Klartext mitschneiden.

In Verbindung mit einem virtuellen Server, zum Beispiel mit HTTP (etwa beim Apache HTTP Server über den VHost Mechanismus), ist es grundsätzlich als Nachteil zu werten, dass pro Kombination aus IP-Adresse und Port nur ein Zertifikat verwendet werden kann, da die eigentlichen Nutzdaten des darüber liegenden Protokolls (und damit der Name des VHosts) zum Zeitpunkt des SSL-/TLS-Handshakes noch nicht übertragen wurden. Dieses Problem wurde in der TLS-Version 1.2 mit der Server Name Indication behoben. Dabei wird bereits beim Verbindungsaufbau der gewünschte Servername mitgesendet.

Weitere bekannte Anwendungsfälle für SSL sind POP3, SMTP, NNTP, SIP, IMAP, XMPP, IRC, LDAP, MBS/IP, FTP, EAP-TLS und TN3270.

Software

Bekannte Implementierungen des Protokolls sind OpenSSL und GnuTLS.

Geschichte

  • 1994, neun Monate nach der ersten Ausgabe von Mosaic, dem ersten verbreiteten Webbrowser, veröffentlichte Netscape Communications die erste Version von SSL (1.0).
  • Fünf Monate später wurde zusammen mit einer neuen Ausgabe des Netscape Navigator die nächste Version SSL 2.0 veröffentlicht.
  • Ende 1995 kam Microsoft mit der ersten Version seines Browsers (Internet Explorer) heraus. Kurz darauf wurde auch die erste Version ihres SSL-Pendants bekannt, PCT 1.0 (Private Communication Technology). PCT hatte einige Vorteile gegenüber SSL 2.0, die später in SSL 3.0 aufgenommen wurden.
  • Als SSL von der IETF im RFC 2246 als Standard festgelegt wurde, benannte man es im Januar 1999 um zu Transport Layer Security (TLS). Die Unterschiede zwischen SSL 3.0 und TLS 1.0 sind nicht groß. Doch dadurch entstanden Versionsverwirrungen. So meldet sich TLS 1.0 im Header als Version SSL 3.1.
  • Später wurde TLS durch weitere RFCs erweitert:
    • RFC 2712 – Addition of Kerberos Cipher Suites to Transport Layer Security (TLS).
    • RFC 2817 – Upgrading to TLS Within HTTP/1.1 erläutert die Benutzung des Upgrade-Mechanismus in HTTP/1.1, um Transport Layer Security (TLS) über eine bestehende TCP-Verbindung zu initialisieren. Dies erlaubt es, für unsicheren und für sicheren HTTP-Verkehr die gleichen „well-known“ TCP Ports (80 bzw. 443) zu benutzen.
    • RFC 2818 – HTTP Over TLS trennt sicheren von unsicherem Verkehr durch Benutzung eines eigenen Server-TCP-Ports.
    • RFC 3268 – Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security (TLS) nutzt die Erweiterbarkeit von TLS und fügt den bisher unterstützten symmetrischen Verschlüsselungsalgorithmen (RC2, RC4, International Data Encryption Algorithm (IDEA), Data Encryption Standard (DES) und Triple DES) den Advanced Encryption Standard (AES) hinzu.
  • Im April 2006 wurde in RFC 4346 die Version 1.1 von TLS standardisiert und damit RFC 2246 obsolet. In TLS 1.1 wurden kleinere Sicherheitsverbesserungen vorgenommen und Unklarheiten beseitigt.
  • Im August 2008 erschien mit RFC 5246 die Version 1.2 von TLS, welche somit RFC 4346 obsolet machte. Als wesentliche Änderung wurde die Festlegung auf MD5/SHA-1 in der Pseudozufallsfunktion (PRF) und bei signierten Elementen fallen gelassen. Stattdessen wurden flexiblere Lösungen gewählt, bei denen die Hash-Algorithmen spezifiziert werden können.

Siehe auch

Literatur

  • Eric Rescorla: SSL and TLS: designing and building secure systems. Addison-Wesley, Boston 2001. ISBN 0-201-61598-3
  • Roland Bless et al.: Sichere Netzwerkkommunikation, Springer Verlag, 2005, ISBN 3-540-21845-9
  • Claudia Eckert: IT-Sicherheit. Oldenbourg Verlag, 2006, ISBN 3-486-57851-0

Einzelnachweise

  1. http://support.mozilla.com/eu/kb/Firefox+cannot+connect+securely+because+the+site+uses+an+older+insecure+version+of+the+SSL+protocol
  2. http://lists.alioth.debian.org/pipermail/pkg-mozilla-maintainers/2005-April/000024.html
  3. http://www.gnu.org/software/gnutls/manual/html_node/On-SSL-2-and-older-protocols.html