Schwefelwasserstoffgruppe


Als Schwefelwasserstoff-Gruppe (H2S-Gruppe) bezeichnet man eine Gruppe von Elementen, deren Salze mit Schwefelwasserstoff-Lösung auch in Gegenwart von Säure schwerlösliche Sulfide bilden. Hierzu gehören Kationen der Metalle mit den Elementsymbolen
- Hg und Pb (beide auch in der Salzsäuregruppe, hier jedoch fallen noch Reste dieser Kationen als Quecksilber(II)- und Blei(II)-sulfid aus),
- Bi, Cu und Cd (zusammen mit Pb und Hg als „Kupfergruppe“ bezeichnet) und
- Sb, Sn, As („Arsen-Zinn-Gruppe) und gegebenenfalls auch Se.
Die Sulfidfällung im sauren Bereich (idealerweise mit Essigsäure/Natriumacetat-Pufferlösung bei pH-Werten um 4 bis 5) dient im Kationentrenngang der qualitativen Analyse (in der Anorganischen Chemie) zur Abtrennung und zum Nachweis der oben genannten Kationen. Im Filtrat befinden sich danach die Kationen der restlichen Trenngangs-Gruppen:
- Ammoniumsulfid-Gruppe,
- Ammoniumcarbonat-Gruppe und
- Lösliche Gruppe.
Gruppenfällung

Fast alle Schwermetallkationen sind in Kombination mit Sulfid-Anionen unlöslich in Wasser (Sulfid-Beispiele im Bild rechts, von links nach rechts: Niederschläge mit Mangan(II)-, Kadmium(II)-, Kupfer(II)-, Zink(II)-, Antimon(III)-, Bismut(III)-, Blei(II)- und Zinn(IV)-Kationen). Die Schwefelwasserstoffgruppe jedoch besteht aus Schwermetall-Salzen bzw. -Kationen, die besonders schwer löslich sind und deshalb aus dem Filtrat der Salzsäuregruppe in einer Fällungsreaktion auch dann schwerlösliche Sulfide bilden, wenn dieses nicht neutralisiert, sondern direkt im sauren Bereich mit dem Trennmittel Schwefelwasserstoff versetzt wird (die Sulfidfällung). So fällt zum Beispiel das Salz Kupfer(II)-nitrat auch im salzsauren Milieu aus:
Andere Schwermetallsulfie wie z. B. Zink- und Mangansulfid bleiben jedoch noch gelöst, da sie erst im neutralen bis alkalischen pH-Bereich unlöslich sind („säurelösliche Sulfide“). So ist es möglich, über den pH-Wert und die Sulfidkonzentration eine Trennung der Schwefelsäuregruppe von den Kationen der folgenden Ammoniumsulfidgruppe zu trennen. Bei einem pH-Wert von 4 bis 5 fallen daher aus:

- Quecksilber(II)-sulfid – HgS, schwarz (als Mineral Zinnober auch in roter Modifikation vorkommend)
- Blei(II)-sulfid – PbS, schwarz
- Kupfer(II)-sulfid – CuS, schwarz
- Cadmium(II)-sulfid – CdS, gelb (ein Pigment)
- Bismut(III)-sulfid – Bi2S3, schwarzbraun
- Antimon(III)-sulfid – Sb2S3, braunorange
- Zinn(II)-sulfid – SnS, braun
- Zinn(IV)-sulfid SnS2, weißgelb
Beim sogenannten erweiterten Kationentrenngang werden zusätzlich Ge, Se, Te, Mo, Ti berücksichtigt.
Gruppentrennung und Kationennachweise
Der Ausfällung der Schwefelwasserstoffgruppe folgt eine Trennung der Kationen voneinander, um sie anschließend ungestört mit Hilfe von Nachweisreaktionen auffinden zu können. Man unterteilt diese Gruppe zunächst weiter in Kupfer- und Arsen-Zinn-Gruppe. Hierzu wird der Sulfidniederschlag in Ammoniumpolysulfidlösung ausgelaugt. Die Niederschläge der Arsen-Zinn-Gruppe lösen sich dabei in Form von Thiosalzen auf, während die Kupfergruppe ungelöst verbleibt und durch Filtration abgetrennt werden kann.
Kupfer-Gruppe
Es fallen Bi2S3 (braun), CuS (braun), CdS (gelb) und als Reste aus der vorangegangenen Salzsäuregruppe auch: PbS (schwarz), HgS (schwarz) aus.
Arsen-Zinn-Gruppe
Als Thiosalze löslich sind Sb2S3/Sb2S5 (orange), As2S3/As2S5 (gelb), SnS/SnS2 (braun/gelb) und MoS2.
Auftrennung und Nachweis der Kationen der Kupfergruppe
Die Sulfidniederschläge der Kupfergruppe werden in halbkonzentrierter Salpetersäure gelöst. Hierbei ungelöstes Quecksilber(II)-sulfid kann abfiltriert werden.
Das Blei-Kation wird abgetrennt, indem man das Filtrat anschließend mit Schwelsäure abraucht (Blei(II)-sulfat ist unlöslich).
Bismut wird vom Kupfer und Kadmium getrennt, indem man nach Abfiltration des Blei(II)-sulfates die Lösung mit Ammoniakwasser im Überschuss versetzt: Es bildet sich wasserunlösliches Bismuthydroxidsulfat Bi(OH)SO4, während Kadmium- und Kupfer-Ionen als Diamminkomplexe gelöst bleiben. Kupfer ist dabei sofort an der blauen Farbe der Lösung zu erkennen (Nachweis):
- Kupfer(II)-Kationen reagieren mit Ammoniak zu dem blauem Tetraaminkupfer(II)-Komplex.
Einzelnachweise aller Kationen der Schwefelwasserstoffgruppe
Kupfer-Kationen

Kupfer(II)-salze (meist bläuliche Farbe; siehe Bild linkes Reagenzglas: Kupfer(II)-sulfatlösung) ergeben mit Ammoniaklösung bei pH-Werten über 8 tiefblaue Komplexsalz-Lösungen. (siehe Bild mittiges Reagenzglas)
- Kupfer(II)-Ionen und Ammoniak reagieren zum tiefblauen Komplex-Ion Tetraaminkupfer(II); siehe Komplexbildungsreaktion
Eine weitere Variante Kupfer(II)-Ionen nachzuweisen erfolgt mit einer Kaliumhexacyanidoferrat(II)-lösung (Gelbes Blutlaugensalz, auch: Kaliumhexacyanoferrat-II). Der zu untersuchende Stoff wird in diese Lösung gegeben; fällt ein braunroter Feststoff aus, so waren Kupfer(II)-Ionen vorhanden (siehe Bild, rechtes Reagenzglas).
- Kupfer(II)-Ionen und Kaliumhexacyanidoferrat(II) reagieren zum roten Komplex Kupfer(II)-hexacyanidoferrat(II) und Kalium-Ionen; siehe Komplexbildungsreaktion
Bismut-Kationen
Zum Nachweis von Bismut(III)-Kationen sollte die zu untersuchende Lösung erst einmal neutralisiert werden (pH 6,5-8). Anschließend wird alkalische Zinn(II)-Lösung hinzugegeben. Die Zinn(II)-Ionen wirken dabei als Reduktionsmittel, sie reduzieren also Bismut(III)-Ionen zu elementarem, schwarzem Bismut, welches in wässriger Lösung ausfällt.
- Bismut(III)-Ionen und Zinn(II)-Ionen reagieren zu elementarem Bismut und Zinn(IV)-Ionen.
Eine weitere Variante wäre die Zugabe von Iodidlösung. Dabei fällt zunächst schwarzes Bismut(III)-iodid aus, welches sich dann im Iodidüberschuss als orangenes Tetraiodobismutat(III)-Komplex löst.
- Bismut(III)-Ionen und Iodid-Ionen reagieren zum schwarzen Bismut(III)-iodid.
- Bismut(III)-iodid und Iodid-Ionen (im Überschuss) reagieren zum orangenen Tetraiodobismutat(III)-Komplex.
Cadmium-Kationen
Cadmium weist man durch Zugabe von Natrium- oder Ammoniumsulfidlösung zur essigsauren Cadmiumsalzlösung nach: Es entsteht ein gelber Niederschlag von Cadmiumsulfid. Im Kationentrenngang ist Cadmium zuvor von störenden Begleitmetallen bzw. -schwermetallkationen zu trennen (vgl. unter Schwefelwasserstoffgruppe, dort ist CdS auch abgebildet). Insbesondere Kupferionen stören hier diesen Nachweis und müssen zuvor mit giftigem Kaliumcyanid „maskiert“ werden.
Kupfersalze müssen im Kationentrenngang vor dem Cadmiumnachweis aufwändig in einen farblosen Tetracyanidocuprat(II)-Komplex überführt werden(wie in obengenannter Reaktionsgleichung beschrieben): Nach Zugabe von Zyankali (KCN) zur Hauptlösung der Kupfergruppe muss sich die Lösung entfärben (ein zusätzlicher Nachweis für Cu; Achtung: Ab hier die Lösung nicht mehr ansäuern, sonst entsteht hochgiftige Blausäure (HCN-Gas)! Bei der Entsorgung beachten – mit konz. Wasserstoffperoxid entgiften!). Wenn man bis zur vollständigen Entfärung KCN zugegeben hat, kann man dann mit einer Sulfid-Lösung das gelbe Cadmiumsulfid CdS ausfällen, ohne dass schwarzes Kupfer(II)-sulfid stört.
- Cadmium(II)-Ionen und Sulfid-Ionen reagieren im wässrigen Milieu zum gelben Cadmiumsulfid, welches ausfällt.
Antimon-Kationen
Antimon-Ionen weist man durch Ausfällung als orangenes Antimon(III)-sulfid nach. Dazu wird entweder eine konzentrierte Schwefelwasserstoffsäurelösung oder eine Alkalisulfidlösung zur Stoffprobe gegeben. Es muss jedoch beachtet werden, dass vorher störende Arsen- und Zinn-Ionen auszufällen sind.
- Antimon-Ionen und Sulfid-Ionen reagieren im wässrigen Milieu zum orangefarbenden Antimonsulfid.
Ein weiteres Nachweisverfahren ist die Nagelprobe: Dazu wird ein Eisennagel in die Antimonsalz-Lösung gelegt. An ihm bildet sich nach einiger Zeit eine Schicht aus elementarem Antimon (Sb). Diese kann im Sauren wieder gelöst werden.
- Bei der hier abspielenden Redoxreaktion werden Antimon(III)-Ionen zu elementarem Antimon reduziert und elementares Eisen zu Eisen(II)-Ionen oxidiert.
Alternativ kann auch die Marshsche Probe durchgeführt werden – ein Nachweis für Antimon und Arsen.
Arsen-Kationen
1.) Die Marsh'sche Probe - siehe Marshsche Probe
2.) Die Bettendorfsche Probe: Bei der Bettendorfschen Probe wird die reduzierende Wirkung des Zinn(II)-chlorids ausgenutzt. Dieser Nachweis ist innerhalb der Arsengruppe spezifisch für Arsen. Ein schwarzer Niederschlag bzw. eine Braunfärbung der Lösung deutet auf Anwesenheit von Arsen.
- Arsen(III)-Ionen reagieren mit Zinn(II)-Ionen und Chlorid-Ionen zu braunschwarzem, elementarem Arsen und dem Hexachlorostannat(IV)-Komplexion.
Sehr kleine Arsenmengen lassen sich mit Ether oder Amylalkohol nachweisen.
3.) Die Gutzeitsche Probe: Arsen(III)-Ionen bilden mit naszierendem Wasserstoff Arsenwasserstoff, welcher mit Silbernitrat zu dem gelben Doppelsalz Silberarsenidnitrat reagiert. Dieses färbt sich nach einigem Stehen unter Silberbildung schwarz.
Etwas Ursubstanz wird in einem kleinem Erlenmeyerkolben mit einer Zinkgranalie und etwas Schwefelsäure versetzt. Der Kolben wird mit einem Wattebausch verschlossen und auf seine Öffnung ein Filterpapier mit etwas festem Silbernitrat und einigen Tropfen Wasser gelegt. Durch Arsenwasserstoff kommt es zur Gelbfärbung des Nitrats und anschließender Schwärzung durch elementares Silber.
- Arsenwasserstoff reagiert mit Silbernitrat zu Silberarsenidnitrat und Salpetersäure.
- Silberarsenidnitrat reagiert mit Wasser zu elementarem Silber, arseniger Säure und Salpetersäure.
4.) Die Fleitmannsche Probe: Bei der Fleitmannschen Probe wird im alkalischen Medium Arsenwasserstoff gebildet:
Dazu wird die Probelösung in einem kleinen Erlenmeyerkolben mit Kaliumhydroxid und Aluminiumpulver erhitzt. Eventuell entstehender Schwefelwasserstoff wird mit Blei(II)-acetatlösung (auf einem Wattebausch in der Mündung des Reagenzglases) abgefangen. Die Öffnung des Kolbens wird mit einem Filterpapier bedeckt, das mit Silbernitratlösung oder Quecksilber(II)-chloridlösung getränkt ist. Eine Gelbfärbung, die allmählich in Schwarz übergeht bzw. eine sofortige Braunfärbung zeigen Arsen an.
- Arsen(III)-Ionen reagieren mit Aluminium im alkalischen Medium zu Arsenwasserstoff und zum Tetrahydroxoaluminat(III)-Ion.
- Arsenwasserstoff reagiert mit Quecksilber(II)-chlorid zum braungefärbten Arsenmercurid und Chlorwasserstoff.
- (Reaktionsgleichungen für die Reaktion mit Silbernitrat siehe Gutzeitsche Probe)
Zinn-Kationen
Zinnsalze können sehr gut mit der Leuchtprobe nachgewiesen werden: Die Lösung ist mit 20 % HCl und Zinkpulver zu versetzten – es entsteht Wasserstoff (naszierend, atomar – gutes Reduktionsmittel).
- Zink und Salzsäure reagiert zu naszierendem Wasserstoff und Zinkchlorid.
In diese Lösung ein Reagenzglas eintauchen, das mit kaltem Wasser oder mit etwas mit Kaliumpermanganat eingefärbtem Eis gefüllt ist. Im Dunkeln in die nichtleuchtende Bunsenbrennerflamme halten. Nach kurzer Zeit entsteht bei Anwesenheit von Sn-Ionen die typische blaue Fluoreszenz, hervorgerufen durch das Gas Stannan. (Bei Unsicherheiten: Vergleichs- und Blindprobe durchführen!).
- Zinn(II)-Ionen reagieren mit naszierendem Wasserstoff beim Vorhandensein von Elektronen zu Stannan.
Auch die Molybdänreaktion ist für den Nachweis für Zinnsalze geeignet.
Zur Reduktion von Zinn(II)-Ionen wird die alkalische Probelösung mit verdünnter Schwefelsäure erwärmt. 1 Tropfen dieser Lösung wird auf ein mit Molybdophosphorsäure getränktes Filterpapier getüpfelt und mit heißem Wasserdampf behandelt. Die Bildung eines blauen Flecks innerhalb weniger Minuten zeigt bei Abwesenheit von Antimon(III)-Ionen eindeutig Zinn(II)-Ionen an.
Literatur
- Gerhart Jander: Einführung in das anorganisch-chemische Praktikum. S. Hirzel Verlag, Stuttgart 1990 (in 13. Aufl.), ISBN 3-7776-0477-1
- Michael Wächter: Stoffe, Teilchen, Reaktionen. Verlag Handwerk und Technik, Hamburg 2000, S.154-169 ISBN 3-582-01235-2
- Bertram Schmidkonz: Praktikum Anorganische Analyse. Verlag Harri Deutsch, Frankfurt 2002, ISBN 3-8171-1671-3
Weblinks
- Wikibooks: Praktikum Anorganische Chemie/ Schwefelwasserstoffgruppe – Lern- und Lehrmaterialien