Zum Inhalt springen

Erneuerbare Energien

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 4. Januar 2010 um 21:53 Uhr durch Ekab (Diskussion | Beiträge) (Akkumulatoren: Mit diesen werden jedoch die Beschaffung erforderlicher Rohstoffe ( z. B. Lithium ), die Steuerungstechnik und die notwendigen Sicherheitsmaßnahmen aufwändiger.). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Beispiele der Gewinnung erneuerbarer Energie: Biogas, Photovoltaik und Windenergie

Als erneuerbare Energien, auch regenerative Energien oder Alternativenergien, bezeichnet man nachhaltige Energiequellen. Sie bleiben – nach menschlichen Zeiträumen gemessen – kontinuierlich verfügbar und stehen hiermit im Gegensatz zu fossilen Energieträgern und konventionellen Kernbrennstoffen, deren Vorkommen bei kontinuierlicher Entnahme stetig abnimmt.

Physikalisch genommen kann Energie weder verbraucht noch erneuert werden; sie kann jedoch Systemen zugeführt und Systemen entnommen werden. Der Begriff „erneuerbare Energie“ wird heute im allgemeinen Sprachgebrauch auf Systeme angewandt, mit denen aus den in der Umwelt laufend stattfindenden Prozessen Energie abgezweigt und der technischen Verwendung zugeführt wird. Die Systeme setzen sich dabei aus dem ursprünglichen Ökosystem und dem System zusammen, mit dem zur Entnahme der Energie aus dem Ökosystem in das Ökosystem eingegriffen wird.

Die vom Menschen nutzbaren Energieströme entspringen unterschiedlichen Energiequellen:

  • der Strahlung aufgrund von Kernfusion in der Sonne,
  • der vorhandenen Wärme im Erdinnern,
  • der Erdrotation und den damit verbundenen Effekten (Gezeiten).

Auf der Erde können diese Energiequellen in Form von Sonnenlicht und -wärme, Windenergie, Wasserkraft, Biomasse und Erdwärme genutzt werden. Ihre Verwertung zählt zu den so genannten Backstop-Technologien. Mit der EU-Richtlinie zu den erneuerbaren Energien vom 23. April 2009 2009/28/EG[1] wird den Mitgliedsstaaten der Europäischen Union der Erlass von Gesetzen vorgeschrieben, die die Verwendung der erneuerbaren Energien in den Bereichen Strom, Wärme und Kälte sowie Verkehr fördern, damit bis 2020 ein Gesamtanteil dieser Energien an dem Energiegesamtverbrauch innerhalb der EU von 20 % erreicht wird. In Deutschland geschieht dies bereits durch das Gesetz für den Vorrang erneuerbarer Energien im Strombereich, dem Gesetz zur Förderung erneuerbarer Energien im Wärmebereich sowie dem Biokraftstoffquotengesetz im Verkehrsbereich.

Erneuerbare Energien in Deutschland – in Petajoule[2]
1995 2000 2004 2005 2006 2007 2008
Wasserkraft 77 92 76 77 78 76 75
Windenergie 6 35 92 95 110 143 145
Photovoltaik 0,03 0,3 2 4 7 11 14
Holz, Stroh, u.a. feste Stoffe 124 210 261 293 334 352 405
Biodiesel, u.a. flüssige Brennstoffe 2 13 42 85 163 206 167
Klärschlamm, Müll, Deponiegas 45 39 34 48 57 63 71
Klärgas einschl. Biogas 14 20 24 39 66 88 92
Sonstige erneuerbare (1) 7 9 15 16 19 22 24
Insgesamt 275 417 545 659 834 961 993
Prozentualer Anteil am
Endenergieverbrauch
3,8 5,5 6,6 8,1 9,8 9,7
Prozentualer Anteil am
Primärenergieverbrauch (nach Wirkungsgradprinzip)
1,9 2,9 3,7 4,6 5,7 6,9[3] 7,1[4]
(1) Solar-, Geothermie und Wärmepumpen
  • Quelle: Bundesministerium für Wirtschaft und Technologie Stand: 07.2007,
  • BMU 31. Juli 2008[2]
  • BMU April 2009[3]

Begriff

Windpark bei Lübz, Mecklenburg-Vorpommern
Photovoltaikanlage in der Nähe von Freiberg (Sachsen)
Ein Wasserkraftwerk in New Mexico, USA
Holz ist wohl die am längsten genutzte erneuerbare Energie.

Die in der Sonne ablaufenden Kernfusionen sind die Quellen der solaren und der meisten anderen regenerativen Energieformen, mit Ausnahme der mit Geothermie und der Gezeitenkraft gewonnenen Energie. Die Sonne hat eine restliche Brenndauer von etwa 5 Milliarden Jahren, so dass bei ihrer Nutzung nicht das Problem der in wenigen Generationen aufgebrauchten Reserven auftreten kann.

Energie kann nicht erneuert oder regeneriert werden (Energieerhaltungssatz), daher ist der Begriff erneuerbare Energie streng genommen falsch. Man versteht unter der „Nutzung der erneuerbaren Energien“ einen Prozess der Energieumwandlung (zum Beispiel Umwandlung in Elektrizität), dem aus den oben genannten Quellen ständig Energie zugeführt wird, ohne dass dabei begrenzte Ressourcen verbraucht werden. Sonnenenergie wird zu einem recht kleinen Teil in natürlichen Prozessen kontinuierlich umgewandelt und zu einem größeren Teil direkt in den Weltraum reflektiert oder auf der Erde thermisch absorbiert. Dient der in die Biosphäre eingetragene Teil dem Aufbau von Strukturen, dann kann er entropiesenkend wirken, dieser Teil führt nicht zur Erwärmung. Die durch Sonneneinstrahlung, Erdwärme oder infolge Strukturabbaus (wie der Verbrennung von Biomasse) erwärmte Biosphäre wiederum emittiert Energie im Infrarotbereich zurück in den Weltraum, so dass ihr Energiehaushalt insgesamt weitgehend ausgeglichen ist.

Die Nutzung erneuerbarer Energien bedeutet eine Umleitung eines Teils dieser Energieströme, um sie für den Menschen nutzbar zu machen, bevor sie wieder in den ursprünglichen Prozess eingegliedert werden.

Im Gegensatz zur Nutzung laufender Prozesse steht der Abbau von fossilen Energiequellen wie Steinkohle oder Erdöl, die heute sehr viel schneller verbraucht als neu gebildet werden. In einem strengen Sinn wären auch sie erneuerbar, allerdings nicht auf menschlichen Zeitskalen, da ihre Bildung meist mehrere hundert Millionen Jahre dauert. Der umgangssprachliche Gebrauch der Begriffe Erneuerbarkeit und Regeneration weist auf diesen Unterschied hin: Entscheidend ist das Prinzip der Nachhaltigkeit, das heißt, dass der Mensch eine Ressource nicht stärker beansprucht, als sie sich regenerieren kann. Dies betrifft sämtliche mit der Energienutzung verbundenen Schnittstellen zwischen Zivilisation und Natur, also sowohl die Quellen als auch die Senken der vom Menschen kontrollierten Energie- und Stoffströme.

Besonders anschaulich ist der Prozess der Erneuerung bei Energie aus Biomasse: Für nahezu alle laufenden Prozesse in der irdischen Biosphäre ist die Sonne der ständige Energielieferant. Diese Prozesse können sogenannte nachwachsende Rohstoffe hervorbringen, deren forcierte Verbrennung, etwa zu Heiz- oder Antriebszwecken, an die Stelle natürlicher Verrottung tritt. Dabei wird gerade so viel Kohlendioxid frei, wie die gewachsene Biomasse der Atmosphäre zuvor entnommen hat (CO2-Neutralität); jedoch wird für die Gewinnung oft zusätzliche Energie (Düngemittel, Pestizide, Landmaschinen und Transport) aufgebracht, die in die Betrachtung einbezogen werden muss.

Die Kernspaltung in Kraftwerken wird nicht zu den erneuerbaren Energien gezählt, da sie sich aus endlichen, auf der Erde nicht regenerierbaren Rohstoffen (Uran oder Thorium) speist und zudem in erheblichem Umfang Stoffe hinterlässt, die sich in keinen natürlichen Kreislauf einfügen lassen. Ähnliches gilt für eine etwaige zukünftige Nutzung von Kernfusionsreaktoren, die in der sich derzeit entwickelnden Form Lithium verbrauchen. Auch eine Kernfusion auf Basis der in großen Mengen vorhandenen Protonen, die technisch noch ferner liegt, wird von den meisten Fachleuten nicht zu den erneuerbaren Energien gezählt.

Arten

Physikalisches und technisches Potential erneuerbarer Energien

Theoretischer Platzbedarf für Solarkollektoren, um in Solarthermischen Kraftwerken den Strombedarf der Welt, Europas (EU-25) oder Deutschlands zu erzeugen[5]

Die auf die Erde eingestrahlte Sonnenenergie beträgt etwa das Zehntausendfache des aktuellen menschlichen Energiebedarfs. Erdwärme und Gezeitenkraft liefern relativ dazu geringere, aber immer noch absolut hohe Beiträge. Rein physikalisch betrachtet, steht damit mehr Energie zur Verfügung, als in absehbarer Zukunft gebraucht werden wird.

Skizze einer möglichen Infrastruktur für eine nachhaltige Stromversorgung in EUropa, dem Nahen Osten (the Middle-East) und Nord-Afrika (kurz: EU-MENA)

In einigen Beispielprojekten ist es gelungen, den an einem Ort benötigten Energieverbrauch dezentral mit Erneuerbaren Energien zu decken[6][7] (Nullenergiehaus, Bioenergiedorf). Daneben gibt es immer wieder Anläufe für zentrale Großprojekte auf Basis erneuerbarer Energien. Ein Beispiel für ein solches Großprojekt ist das Mitte 2009 beschlossene Desertec-Project. Studien des Deutschen Zentrums für Luft- und Raumfahrt (DLR) ergaben, dass mit weniger als 0,3 Prozent der verfügbaren Wüstengebiete in Nord-Afrika und im Nahen Osten durch Solarthermische Kraftwerke genügend Strom[8] und Trinkwasser für den steigenden Bedarf dieser Länder sowie für Europa erzeugt werden kann. Die Trans-Mediterranean Renewable Energy Cooperation (TREC), ein internationales Netzwerk von Wissenschaftlern, Politikern und Experten auf den Gebieten der erneuerbaren Energien und deren Erschließung, setzt sich für eine solche kooperative Nutzung der Solarenergie ein. Eine Nutzung der Passatwinde im Süden Marokkos soll die solare Energieerzeugung ergänzen. Fünf realistische Szenarien für eine solche zukünftige Energieversorgung liefert Prof. David J. C. MacKay.[9]

Ein praktisches Beispiel für das Potential von Solarenergie ist das größte europäische solarthermische Kraftwerk Andasol. Ein praktisches Beispiel für das Potential von Windenergie ist, dass Sachsen-Anhalt im Jahr 2005 fast 40 Prozent des eigenen Strombedarfs aus eigener Windenergie potentiell erzeugen konnte (siehe Windenergie in Deutschland).

Bedeutung

In einigen Ländern (zum Beispiel in Deutschland, Spanien, USA, aber auch China) nimmt die regenerativ gewonnene Energiemenge derzeit rasch zu. Ein weltweites Wachstum wird jedoch noch durch – im Vergleich zu konventionellen Energieträgern – relativ hohe Investitionskosten und den notwendigen Technologietransfer erschwert.

Erneuerbare Energien werden fossile Energien und Kernenergie langfristig ersetzen, da letztere nur in begrenztem Umfang zur Verfügung stehen und ihr Einsatz ökologisch immer problematischer wird. Insbesondere tragen erneuerbare Energien wesentlich geringer zur globalen Erwärmung bei; die Klimafolgen bei der Nutzung von Biomasse, zum Beispiel durch unerwünscht entweichendes Methan, sind deutlich geringer als bei fossilen Energieträgern.

Im Gegensatz zu fossilen Energieträgern wird bei der Nutzung der meisten erneuerbaren Energien kaum Kohlenstoffdioxid ausgestoßen. Lediglich bei der Herstellung der Kraftwerke und bei der Verbrennung von Biomasse wird CO2 in die Umwelt emittiert, welches jedoch der Menge entspricht, welche die zur Herstellung der Biomasse nötigen Pflanzen der Atmosphäre beim Vorgang der Photosynthese entzogen haben. Hierbei spricht man von CO2-Neutralität. Allerdings hat eine geänderte Landnutzung, zum Beispiel durch Anbau von Energiepflanzen, weitere ökologische Auswirkungen. Diese folgen unter anderem aus der geänderten Menge an gebundenem CO2 und dem notwendigen Einsatz von Düngemitteln. Bei einem hohen Angebot an Nitrat entsteht beim bakteriellen Abbau das sehr klimaschädliche Lachgas. Es wirkt auf seine Masse bezogen 300-mal stärker als Kohlendioxid[10].

Auch vor dem Hintergrund endlicher fossiler Ressourcen ist ein schneller Ausbau der erneuerbaren Energien erforderlich. Der durch das globale Ölfördermaximum (Peak Oil) bedingte Rückgang in der Ölförderung würde zu Preissteigerungen und ggf. Lieferengpässen führen. Einige Szenarien sehen deren Folgen von einer wirtschaftlichen Abwärtsspirale bis zu zunehmenden Verteilungskonflikten, die einem Ausbau erneuerbarer Energiequellen die nötige stabile Basis entzöge.[11]

Der Einsatz erneuerbarer Energien bietet also sowohl ökologisch als auch langfristig ökonomisch großes Potential, vor allem durch das Vermeiden der mit anderen Energieformen verbundenen negativen Begleiterscheinungen (Folgeschäden). Ob die erhofften ökologischen Vorteile im Einzelfall realistisch sind, kann jedoch nur durch eine Ökobilanz festgestellt werden. So müssen bei der Biomasse-Nutzung zum Beispiel Landverbrauch, chemischer Pflanzenschutz und Reduzierung der Artenvielfalt der erwünschten CO2-Reduzierung gegenübergestellt werden. Die Abschätzung wirtschaftlicher Nebeneffekte ist ebenfalls mit erheblichen Unsicherheiten behaftet.

Zeitliche Verfügbarkeit

Gegen erneuerbare Energien wird häufig eingewandt, dass Sonne und Wind nicht gleichmäßig zur Verfügung stehen und nur begrenzt vorhergesagt werden können. Dadurch kann sich im Stromnetz die Differenz zwischen gesichertem Angebot und Nachfrage verschärfen. Da sich größere Mengen Elektroenergie nicht ohne verlustbehaftete Umwandlung in andere Energieformen speichern lassen (siehe auch Energiespeicher), müssen hierfür organisatorische und technische Vorkehrungen getroffen werden (siehe auch Kraftwerksmanagement).

Um zu testen, ob ein größeres Gebiet mit Strom aus erneuerbaren Energien sicher versorgt werden kann, gibt es Pilotprojekte, die die Dynamik und Einsatzmöglichkeiten von sogenannten Kombikraftwerken oder virtuellen Kraftwerken untersuchen. Hierbei werden Anlagen aus den verschiedenen EE-Bereichen (Wasser, Wind, Sonne, Biogas, etc.) virtuell zu einem Kraftwerk zusammengeschlossen und simuliert, den zeitgenauen Strombedarf, zum Beispiel einer Großstadt zu decken.[12]

Ob die vermehrte Nutzung von Solarstrom und Windenergie die Schere zwischen Angebot und Nachfrage weiter öffnet, ist allerdings umstritten. Während die konventionellen Kraftwerke rund um die Uhr die gleiche Leistung zur Verfügung stellen (können), passen Photovoltaikkraftwerke relativ gut zum Tagesgang im Lastprofil (tagsüber wird mehr Strom benötigt als nachts). Windkraftwerke arbeiten im (europäischen) Winterhalbjahr stärker als im Sommer und gleichen damit sowohl den Jahresgang im Verbrauch als auch die jahreszeitlichen Schwankungen im Solarstrom aus. Wasserkraftwerke sind für die Grundlastversorgung sehr gut geeignet. Ihre Leistung kann meist sehr gut vorhergesagt und geplant werden.

Technisch gelöst ist der Umgang mit einem Überangebot an Strom. Hierfür stehen Speicherseen in Verbindung mit Wasserkraftwerken zur Verfügung, wo mit geringen Verlusten Energie gespeichert und nach Bedarf abgegeben werden kann. Bei der Wasserkraft kann die Energieumwandlung mehrere Wochen bis Monate, bei den Biogasanlagen mehrere Stunden ohne größere Verluste aufgeschoben werden. Photovoltaik- und Windenergieanlagen können zumindest abgeschaltet und innerhalb von etwa 30 s (Selbsttest und Anfahren eines Photovoltaik-Wechselrichters) bis wenige Minuten (größere Windenergieanlagen) wieder in Betrieb genommen werden. Dies ist sogar ein Vorteil gegenüber großen Dampfkraftwerken und Kernkraftwerken, die nach einer Abschaltung mehrere Stunden bis zur vollen Leistung benötigen. Allerdings wird durch die Abschaltung von Photovoltaik- oder Windenergieanlagen, anders als bei Biogasanlagen und konventionellen Kraftwerken, kein Brennstoff gespart. Daher ist es meist wirtschaftlicher, den Strom für nachrangige, zeitlich weniger fixierte Zwecke zu „verschwenden“ oder Energiespeicher damit aufzuladen.

Zur Deckung eines akuten Strommangels können Wasserkraftwerke und Biogaskraftwerke kurzzeitig über ihrer Durchschnittsleistung, die durch den Nachschub an Wasser und Biomasse begrenzt ist, betrieben werden.

Intelligenter Stromverbrauch

Mit der heutigen Informationstechnik ist es auch möglich, zeitlich flexible Stromverbraucher (zum Beispiel Zementmühlen, Kühl- und Heizsysteme) vorübergehend herunterzuschalten oder vom Netz zu nehmen („Lastabwurfkunden“, „Demand Side Management“). (siehe auch Intelligenter Zähler, Intelligentes Stromnetz). Auch ist eine Regulierung über einen zeitnahen Strompreis denkbar. Der Strompreis wird bei Stromüberangebot gesenkt, bei Strommangel angehoben. Intelligente Stromverbraucher (zum Beispiel Waschmaschinen, Spülmaschinen usw.) schalten bei kleinem Strompreis ein, bei hohem Strompreis aus. In der Industrie könnte eine kurzzeitige Spitzenstromlast vorerst zwischengespeichert werden (zum Beispiel Schwungrad), und nicht direkt dem Stromnetz entzogen werden.

Energiespeicher

Bisher werden für die Speicherung von elektrischer Energie Pumpspeicherkraftwerke oder – für geringe Energiemengen – Akkumulatoren oder hochkapazitive Kondensatoren eingesetzt. Eine Übersicht aller bekannten Verfahren mit Auflistung der charakteristischen Daten ist in der Tabelle des Artikels Energiespeicher dargestellt.

Pumpspeicherkraftwerke

Die Speicherung von elektrischer Energie durch Umwandlung in mechanische Energie wird bereits seit 1924 mit Pumpspeicherkraftwerken praktiziert, die etwa drei Viertel der eingespeicherten Energie wieder abgeben. In Norwegen stehen Pumpspeicherkraftwerke mit der Leistung von 60 GW (entspricht 40 KKW) zur Verfügung. Damit könnte Norwegen zur 'Batterie' Europas werden.[13][14] (siehe auch Transport von Strom)

Druckluftspeicherkraftwerke

An Druckluftspeicherkraftwerken wird in Deutschland seit 31 Jahren mit einer Pilotanlage geforscht. Für Druckluftspeicher nutzt man Kavernen in Salzstöcken, in denen Druckluft mit 72 bar gespeichert wird, die bei Bedarf eine Druckluftturbine antreibt. Dabei wird derzeit ein Wirkungsgrad von etwa 42 Prozent erreicht, wenn die Druckluft mit zusätzlichem Erdgas aufgeheizt wird.

Wärmespeicher

Bei Solarthermischen Kraftwerken können Wärmespeicher (zum Beispiel Flüssigsalztanks) einen Teil der am Tage gewonnenen Wärme aufnehmen und die Dampfturbine nachts antreiben oder bei Nachfragespitzen zusätzlichen Dampf erzeugen. Um eine Versorgungssicherheit auch bei lang anhaltendem schlechtem Wetter zu gewährleisten, ist hier auch eine Zusatzfeuerung durch Öl, Erdgas oder Biomasse möglich. Durch Geothermie erzeugte elektrische Energie steht dagegen kontinuierlich zur Verfügung und kann daher einen Beitrag zur Stabilisierung des Angebots leisten.

Akkumulatoren

Die kritische Komponente bei der Konstruktion ausdauernder mobiler Elektroantriebe ist die Stromversorgung. Bleiakkumulatoren sind hochstromfähig, bewährt, preiswert und mit 80 % Wirkungsgrad effizient. Sie sind jedoch sehr schwer, schadstoffhaltig und haben eine geringe Energiedichte. Deshalb werden für den Elektrofahrzeugbereich zukünftig wohl modernere Akkumulatorsysteme eingesetzt werden. Mit diesen werden jedoch die Beschaffung erforderlicher Rohstoffe ( z. B. Lithium ), die Steuerungstechnik und die notwendigen Sicherheitsmaßnahmen aufwändiger. Zudem sind moderne Akkumulatoren noch nicht ausreichend temperaturstabil, um selbst bei Extremtemperaturen problemlos arbeiten zu können. Auch die Entsorgung und Wiederverwertung ist bei modernen Akkumulatoren problematischer als bei Bleiakkumulatoren.

Energiedichten einiger Speichersysteme
Speichermedium Energiedichte
Li-Polymer-Akku 0,55 MJ/kg
Wasserstoff (inkl. Metallhydridspeicher) ca. 120 MJ/kg
Benzin 43 MJ/kg
Methanol 20 MJ/kg
1-Butanol 33 MJ/kg

Die Energiedichte von Akkumulatoren ist zwar geringer als die Energiedichte beim Wasserstoff, jedoch relativiert sich dieser Effekt durch die Effizienz und die derzeit (vor allem von der Nachfrage für Mobiltelefone und Notebooks motivierte) starke Weiterentwicklung von Akkumulatoren.

Ein prinzipieller Nachteil hoher Energiedichten ist die damit einhergehende Brandgefahr. Hinzu kommt die lange Aufladedauer der Akkumulatoren von mehreren Stunden im Vergleich zu einer Tankdauer von wenigen Minuten bei flüssigen Brennstoffen.

Elektrolyte

Eine weitere Speichermöglichkeit sind Redox-Flow-Zellen. Dabei wird die elektrische Energie in Elektrolyten gespeichert. Die Größe der Tanks (d. h. die Ladekapazität) sowie die Anzahl der Ladezellen (d. h. die Ladegeschwindigkeit) sind theoretisch beliebig skalierbar. So könnte je nach Größe und Lage eines Windparks ein Energiespeicher derart angepasst werden, dass die Speicherkapazität und Ladeleistung mit der Leistung des Windparks und den zu erwartenden Schwachwindphasen übereinstimmen. Windparks – und auch Solaranlagen – könnten dann Energie nach Bedarf liefern. Es existieren zwar bereits Versuchsanlagen, u. a. in Australien, Italien, Japan und Irland, doch eine kommerzielle Einführung scheitert bisher an den geringen Erfahrungen mit Systemen großer Dimension und an noch zu hohen Kosten.

Speicherung als Wasserstoff

Das Konzept der solaren Wasserstoffwirtschaft setzt langfristig auf den Ersatz von fossilen Energieträgern durch Wasserstoff[15]. Er kann durch Elektrolyse gewonnen, gespeichert und gehandelt werden. Die Umwandlung Strom→Wasserstoff→Strom ist allerdings verlustreich, ebenso der Transport und die Lagerung. Bei der Elektrolyse werden nur etwa 75 Prozent der eingesetzten Energie als Wasserstoff chemisch gespeichert. Zusätzlich wird Energie bei der Einlagerung (Kompression bzw. Verflüssigung) benötigt. Mit einer Brennstoffzelle lassen sich daher beim jetzigen Stand der Technik nur etwa 20-25 Prozent der eingesetzten Elektroenergie zurückgewinnen. Das ist wenig im Vergleich zu anderen vorhandenen Verfahren, die oft 80 % Wirkungsgrad und mehr erreichen.

Deutlich bessere Werte bei der Energierückgewinnung lassen sich bereits heute mit Blockheizkraftwerken erreichen, bei denen auch die Abwärme genutzt wird, sofern dafür eine Verwendung besteht.[16]

Eine weitere technische Herausforderung stellt die Lagerung des Wasserstoffs dar. Im Wasserstofffahrzeug Hydrogen 7 etwa wird Wasserstoff in flüssiger Form bei −253 °C und beinahe Normaldruck gespeichert. Da er aufgrund des unvermeidlichen Wärmezuflusses von außen ständig siedet, muss kontinuierlich etwas Wasserstoffgas über ein Sicherheitsventil abgelassen werden. Auch wenn der Wasserstoff nicht gebraucht wird, entleert sich ein halbvoller Tank im Hydrogen 7 so innerhalb von nur 9 Tagen.[17] Auch auf dem Weg von der Wasserstoffherstellung bis in den Tank kommt es zu Verlusten. Wasserstoff diffundiert nicht nur durch feinste Risse, sondern sogar durch viele intakte Materialien. Hinzu kommt ein Sicherheitsproblem, da durch die Vermischung von austretendem Wasserstoff mit Luft Knallgas entstehen kann. Verbesserungen lassen sich von neuartigen porösen Materialien als Wasserstoffspeichern erwarten, die die einzelnen Wasserstoffmoleküle besser binden.[18] Diese Speichertechnik ist zur Zeit jedoch noch relativ schwer und teuer.[19]

Neben der Elektrolyse sind auch andere Verfahren zur Wasserstoffgewinnung vielversprechend, so beispielsweise die direkte Gewinnung von Biowasserstoff, insbesondere durch auf Photosynthese spezialisierte Algen. Bei gleicher Menge an chemisch gebundener Energie wird weniger Anbaufläche benötigt als etwa bei Bioethanol. Die Algen können in Plexiglasröhren sogar mitten in einer Wüste anstatt auf fruchtbaren Ackerflächen gezüchtet werden.

Eine Variante sieht vor, Wasserstoff direkt biologisch über Photosynthese herzustellen. Bislang wird nur eine nicht konkurrenzfähige Energieeffizienz von 0,1 Prozent erreicht.[20]

Das Umweltbundesamt lehnt den Einsatz von Wasserstoff als Treibstoff sowie die Abspaltung von Methanol aus Erdgas zur Treibstoffgewinnung ab, da diese zu hohe Umwandlungsverluste aufweisen, und spricht sich für die Nutzung regenerativen Stroms in Elektro-Fahrzeuge aus: „Die Verwendung von Wasserstoff im Verkehr ist wegen der hohen Energieverluste und Kosten der Produktion, der Aufbereitung und des Transportes nicht zu befürworten. Auch die Herstellung von Methanol vor allem aus Erdgas ist nicht sinnvoll, da das Erdgas auch ohne die Verluste der Methanolherstellung direkt genutzt werden könnte. Selbst sofern regenerative Energieträger im Straßenverkehr eingesetzt werden könnten, wäre der Ersatz von alten hochemittierenden fossilen Kraftwerken durch diese regenerative Energie (Solarenergie, Windenergie, Wasserkraft) wesentlich sinnvoller als der Ersatz von benzinbetriebenen Fahrzeugen mit Verbrennungsmotor durch Wasserstoffantriebe. Würde diese regenerative Energie direkt genutzt werden, könnten auch kabelgebundene Transportmittel, wie Straßenbahn, Fernbahnen und Oberleitungsbusse als ‚Nullemissionsfahrzeug‘ betrieben werden.“[21]

Transport von Strom

Theoretisch kann in der Sahara mehr als genug Energie erzeugt werden, um den Energiebedarf von Europa abzudecken. Dazu ist jedoch ein über große Strecken verlustarmer Stromtransport notwendig. Dafür könnte die Hochspannungs-Gleichstrom-Übertragung geeignet sein.

Zentrale und dezentrale Versorgung

Der Wandel zu einer regenerativen Energiewirtschaft wird oft im Zusammenhang mit seinen ökologischen, sozialen und ökonomischen Auswirkungen gesehen. Anlagen zur Nutzung erneuerbarer Energien sind in der Regel deutlich kleiner als heutige Kraftwerke oder Raffinerien; sie reichen von wenigen Kilowatt (Photovoltaik-Dachanlagen) bis in den zweistelligen Megawattbereich (großer Windpark, Solarthermisches Kraftwerk), während Kernkraftwerke meist über ein Gigawatt produzieren.

Befürworter einer Dezentralisierung betonen, dass bei dezentraler und erneuerbarer Energieversorgung keine umfangreiche überregionale Infrastruktur notwendig ist, da die Energie in der Region verbraucht wird, in der sie gewonnen wird. Der Transport von Energieträgern in Form von Brennstoffen über große Entfernungen würde stark eingeschränkt. Beispiele sind die Nutzung von regionaler Biomasse (Holz, Biogas), Geothermie oder solare Warmwasserbereitung. Energie ist jedoch nicht in allen Regionen mit vergleichbarem wirtschaftlichen Aufwand bereitzustellen.

Bei dezentraler Energiewirtschaft kann auch die Ausnutzung des Brennstoffes erhöht werden, indem die Abwärme von Kleinkraftwerken zum Heizen umliegender Gebiete verwendet wird. Ein Beispiel sind die bereits heute eingesetzten Heizkraftwerke, einschließlich Biomasse- und Biogaskraftwerken.

Durch die Installation neuer Technologien werden neue Arbeitsplätze bei den entsprechenden Herstellern und Betreibern geschaffen. Eine dezentrale Energieversorgung gibt mehr Menschen pro installierter Leistung Arbeit als fossile Großkraftwerke, deren Kosten vor allem durch den Brennstoff bestimmt werden. Eine regionale Energieversorgung vermeidet die politische Abhängigkeit und den Abfluss von Devisen ins Ausland, erst recht wenn auch die Energietechnik im Inland gefertigt wird.

Kritiker der dezentralen elektrischen Energieversorgung betonen die Versorgungssicherheit durch weitgespannte Netzwerke. So können sich Überangebot und Mangel in verschiedenen Regionen ausgleichen. Zum Beispiel würde im Sommer ein Überschuss von Solarstrom aus den Mittelmeerländern geliefert, während im Winter Windstrom aus Nord- und Westeuropa genutzt werden könnte. Daneben weisen Kritiker auch auf Herausforderungen bei der Regelung vieler Kleinkraftwerke in einem großen Netzwerkverbund ohne die Stütze von Großkraftwerken hin. Richtig ist jedoch auch, dass ein System aus großen Verbundnetzen mit wenigen Großkraftwerken großflächige, beispielsweise europaweite Stromausfälle erst ermöglichen. Großflächige Stromausfälle sind bei einer dezentralen Energieversorgung unwahrscheinlicher, allerdings haben 95 % aller Stromausfälle ihre Ursachen in den regionalen Mittel- oder Niederspannungsnetzen. Der Umbau der Energieversorgung auf Nachhaltigkeit bedeutet jedoch nicht notwendigerweise ausschließlich dezentrale Versorgung, einige Konzepte, wie beispielsweise Offshore-Windparks und Solarfarmkraftwerke oder auch die Studien von TREC setzen auch bei erneuerbaren Energien auf zentrale Gewinnung und großräumige Verteilung.

Siehe auch: Dezentrale Stromerzeugung

Umweltauswirkungen durch erneuerbare Energien

Eine Energiewirtschaft, die auf erneuerbaren Energien aufbaut, kann eine Strategie für das Abwenden der globalen Erwärmung bieten, wenn deren Nutzung die Emission von Treibhausgasen verringert. Die unterschiedlichen Technologien zur Nutzung jeder Form von Energie, also auch erneuerbarer Energien, haben grundsätzlich immer Auswirkungen auf die Biosphäre, also auch auf Menschen und das ihr Leben ermöglichende Ökosystem. Dabei müssen auch Aufbau und Abbau der Anlagen betrachtet werden (Produktlebenszyklus). Diese Auswirkungen müssen verstanden und quantitativ dargestellt werden. Erst dann werden Nutzen und Schaden in der Energie- und Entropiebilanz[22], für die Artenvielfalt und soziale Folgen deutlich.

Eine Gefahr der einseitigen Konzentration der Energiepolitik auf die Förderung Erneuerbarer Energien besteht darin, dass das Energiesparen als zweites notwendiges Handlungsfeld aus dem Sichtfeld gedrängt wird.

2007 wurden in Deutschland 6,7 % des Primärenergiehaushaltes durch erneuerbare Energien gedeckt.

Solartechnik

Obgleich die Energiebilanz von Photovoltaik eindeutig positiv ist, so ist die Produktion der Module relativ energieaufwändig. Die Energetische Amortisationszeit in Deutschland beträgt für mono- und polykristalline Zellen etwa sechs Jahre und für Dünnschichtmodule rund ein Jahr. Die Lebenszeit der Solaranlagen beträgt 20 bis 30 Jahre.

Wie bei allen elektronischen Bauteilen werden zum Teil giftige Schwermetalle sowie etwa 12 kg Silizium pro Kilowatt installierter Leistung (mono- und polykristalline Zellen) benötigt. Diese Stoffe verbleiben jedoch in der Fabrik. Das fertige Solarmodul ist nicht giftig oder gefährlich und könnte wie normaler Hausmüll entsorgt werden. Bei solarthermischen Sonnenkollektoren werden Metalle wie Kupfer und Aluminium verbraucht.

Lokal führt Solartechnik zu Änderungen der Energiebilanz, insbesondere durch Verschattung und geänderte Reflexion. Global ist dieses jedoch unbedenklich, denn das solare Energieangebot ist etwa um den Faktor 10.000 größer als der heutige gesamte Weltenergiebedarf. Selbst bei einer solaren Vollversorgung des Weltenergiebedarfs steht deshalb die daraus entnommene Energiemenge in keiner Relation zum Angebot.

Wasserkraft

Talsperren mit Staumauern machen starke Eingriffe in die Umwelt erforderlich. So mussten im Fall des chinesischen Drei-Schluchten-Damms mehr als eine Million Menschen umgesiedelt werden. Bei vielen Stauseeprojekten kam es zu Veränderungen im Ökosystem, da riesige Flächen geflutet wurden und in die saisonalen Wasserstandschwankungen der Flüsse eingegriffen wurde.

In Regionen mit Wassermangel kommt es zu Nutzungskonflikten. So staut zum Beispiel Tadschikistan den Syrdarja (und Nebenflüsse) im Sommer auf, um im Winter Energie zu gewinnen. Das unterhalb gelegene Kasachstan benötigt das Wasser aber im Sommer für seine Landwirtschaft.

Auch Laufwasserkraftwerke greifen in die Flusslandschaft ein. Allerdings werden die meisten europäischen Flüsse ohnehin für die Binnenschifffahrt aufgestaut. Die Strom-Boje verändert das Erscheinungsbild und den Wasserpegel hingegen nur unwesentlich.

Windenergie

Windparks werden von einigen Landschaftsschützern kritisch gesehen. An bestimmten Standorten besteht unter Umständen eine Gefahr für Vögel oder Fledermäuse. Abhängig von den Prioritäten der Kommentatoren wird die Gefährdung von Vögeln entweder als gering oder als bedeutend eingeschätzt. Einfluss auf die regionalen Windverhältnisse wurde bisher nicht festgestellt. Um lokale Beeinflussungen zwischen den einzelnen Anlagen zu minimieren werden sie mit etwas Abstand untereinander (in Hauptwindrichtung meist drei Rotordurchmesser nebeneinander und acht bis zehn Rotordurchmesser hintereinander) errichtet.

Bioenergie

Bioenergie umfasst die Nutzung von festen, flüssigen und gasförmigen Energieträgern, v.a. Raps, Biogas, Pflanzenöle, Mais, Getreide, Zuckerrüben, spezielle Energiepflanzen, Holz, Stroh und Reststoffe aus der Landwirtschaft.

Die Verbrennung der Biomasse kann mit Gefahren für die menschliche Gesundheit einhergehen, wenn sie an offenen Feuerstellen oder in Öfen ohne Filtersysteme erfolgt, da Luftschadstoffe wie Stickoxide, Schwefeldioxid und Feinstaub entstehen.

Das Verbrennen von Biomasse in Öfen, Kaminen oder anderen Kleinfeuerungsanlagern wird in Deutschland gesetzlich mit der Verordnung über Kleinfeuerungsanlagen (Erste BImSchV) geregelt. Damit sollen Gefahren für Mensch und Umwelt durch entsprechend vorgeschriebene Maßnahmen oder Grenzwerte (Filtersysteme, Grenzwerte für Feinstaub und Gase, Typenprüfung für Öfen) unterbunden werden.

Die verfügbare Fläche für den Anbau der Biomasse ist begrenzt und kann in ein Spannungsverhältnis zum Nahrungsmittelanbau und zum Natur- und Landschaftsschutz geraten. Während beispielsweise die Nutzung landwirtschaftlicher Rest- und Abfallstoffe als unproblematisch gilt, ist der intensive Anbau von Nahrungspflanzen zur Herstellung von Treibstoffen in die Kritik geraten. siehe Hauptartikel Nahrungsmittelkonkurrenz

Palmöl zählt ebenfalls zu den Agrartreibstoffen, findet jedoch weder in Deutschland noch allen anderen Ländern Mittel- und Nordeuropas als Treibstoff Verwendung, weil es sich bei niedrigen Temperaturen verfestigt und daher als Treibstoff nicht in Frage kommt. Es wird jedoch für Kosmetika und Lebensmittel in großem Umfang importiert. Der Anbau der Ölpalmen z.B. auf den Philippinen ist häufig mit Problemen verbunden, wie der Rodung tropischer Wälder zur Flächengewinnung für die Plantagen, wodurch Biodiversität sowie eine wertvolle Senke für Klimagase verlorengeht. siehe Hauptartikel Regenwälder

Bei Rapsöl ergeben sich beim erforderlichen großflächigen Anbau Schwierigkeiten für die Landwirtschaft. Dabei werden häufig große Mengen an synthetischen Düngemitteln und Pestiziden eingesetzt. Mensch und Umwelt werden durch die Chemikalien belastet. Die gute fachliche Praxis erfordert bei Rapspflanzen Fruchtfolgen, d.h. sie können nur begrenzt hintereinander auf der gleichen Fläche angebaut werden, weshalb ein dauerhafter Anbau in Monokulturen nicht möglich ist.

Als ökologisch weniger problematisch gelten Cellulose-Ethanol und BtL-Kraftstoffe, da diese Ganzpflanzen und Reststoffe nutzen und nicht auf spezielle Ölpflanzen angewiesen sind. Die Herstellungsverfahren befinden sich allerdings noch in der Entwicklung bzw. in der Erprobung. Noch besser wird die Nutzung von landwirtschaftlichen Reststoffen bewertet.

Geothermie

Auch bei der Geothermie treten negative Umwelteinwirkungen ein. Bei der Stimulation von untertägigen Wärmeübertragern treten seismische Ereignisse auf (Dezember 2006, Basel, Magnitude 3,4). Die Schäden beliefen sich auf 3 und 5 Mio. Franken (ca. 1,8 bis 3,1 Mio. Euro)[23]. Das Projekt wurde eingestellt, gegen den Verantwortlichen wurde Anklage erhoben.

Politische Betrachtung

Anfang Juni 2004 fand in Bonn die Internationale Konferenz für erneuerbare Energien („Renewables“) statt. Sie führte zu der Forderung, dass die Nutzung erneuerbarer Energien ausgebaut werden müsse. Dies sei im Sinne der Armutsbekämpfung und des Klimaschutzes. Es wurden dazu politische Strategien und konkrete Maßnahmen weiterentwickelt. Die Beratungen mündeten in drei Beschlüssen:

  • Ein internationales Aktionsprogramm mit 165 bestätigten Aktionen und Verpflichtungen fasst konkrete Maßnahmen, Ausbauziele und freiwillige Verpflichtungen einzelner Länder und Regionen zusammen.
  • In einer Deklaration von Bonn haben die Ministerinnen und Minister eine politische Vision für eine globale Energiewende formuliert und sich auf einen Folgeprozess für die Bonner Konferenz verständigt.
  • Es wird angenommen, dass Politikempfehlungen praktikable Wege für den Ausbau erneuerbarer Energien zeigen.

Das deutsche Gesetz über Erneuerbare Energien (EEG) soll den Anteil von Wind-, Wasser-, Sonnenenergie und Geothermie an der Stromerzeugung in Deutschland bis 2010 auf mindestens 12,5 Prozent steigern (2020: 20 %). Bis 2020 werden in diesen Branchen über 200 Milliarden Investitionen getätigt, also ein Vielfaches der in der fossilen Energieversorgung vorgesehenen Investitionen. Seit 1991 müssen Energieversorger Strom aus erneuerbaren Energien zu Mindestpreisen abnehmen, dies führt jedoch nur zu einer geringfügigen Erhöhung der Strompreise beim Endkunden (0,15 ct/kWh). Nach einer Prognose, die Anfang 2009 veröffentlicht wurde, könnte im Jahre 2020 bereits 47 % des Bedarfs an elektrischem Strom in Deutschland durch erneuerbare Energien gedeckt werden.[24]

2007 wurden international mit 148 Mrd. US-Dollar etwa 60 Prozent mehr Investitionen in Anlagen zur Nutzung von erneuerbaren Energien als im Jahr 2006 getätigt. Mit 50,2 Mrd. fiel dabei der größte Teil auf Windkraftnutzung.[25] Die größte Investitionssteigerung erfuhr die Sonnenenergie; seit 2004 stiegen die Investitionen jährlich um 254 Prozent auf 28,6 Mrd. US-Dollar im Jahr 2007. Europa ist mit 49,5 Mrd. US-Dollar Spitzenreiter bei den Investitionen.[26]

Arbeitsmarkt

Laut dem deutschen Bundesministerium für Umweltschutz, Naturschutz und Reaktorsicherheit (BMU) hat sich die Zahl der Beschäftigten im Wirtschaftszweig Erneuerbare Energien innerhalb von zwei Jahren nahezu verdoppelt. Im Jahr 2006 arbeiteten 235.000 Berufstätige bei Herstellern, Zulieferern, Projektierern und anderen Unternehmen der Erneuerbaren-Energien-Branche. Die größten Arbeitgeber sind die Bioenergiebranche (über 95.000 Arbeitsplätze), die Windenergie (82.100 Arbeitsplätze) und Solarenergieunternehmen (ca. 40.200 Arbeitsplätze). Nach Studien des BMU könnten bis zum Jahre 2020 über 400.000 Menschen in Deutschland im Bereich erneuerbare Energien beschäftigt sein.[27]

Statistik

Prognosen und Szenarien

Prognosen zur Entwicklung der erneuerbaren Energien weisen deutliche Unterschiede auf. Das Bundeswirtschaftsministerium geht in seiner 2008 veröffentlichten “Stromvision 2030” von einem Anteil von 33 % erneuerbarer Energien im Jahr 2030 aus.[28] Demgegenüber rechnen die deutschen Übertragungsnetzbetreiber in ihrer 2009 vorgelegten Mittelfristprognose mit über 30% Anteil der erneuerbaren Energien an der Stromerzeugung bereits im Jahr 2015.[29] Der Bundesverband Erneuerbare Energien (BEE) hält in seiner 2009 veröffentlichten Branchenprognose einen Anteil von 47 % erneuerbaren Energien an der deutschen Stromversorgung im Jahre 2020 für erreichbar.[30]

Die in den letzten Jahrzehnten gemachten Prognosen und Szenarien haben die Potentiale der erneuerbaren Energien systematisch unterschätzt, wie im Rückblick festzustellen ist. Eine Meta-Studie der Agentur für Erneuerbare Energien, die 50 der wichtigsten Szenarien für die deutsche, europäische und weltweite Entwicklung der Energieversorgung der letzten Jahrzehnte auswertet und der realen Entwicklung gegenüberstellt, kommt jedenfalls zu diesem Schluss.[31]

Die Prognosen der Europäischen Union (EU) und der Internationalen Energieagentur (IEA) weichen dabei besonders stark von der tatsächlichen Entwicklung ab. So wurden die in der 1994 vorgelegten “Primes”-Studie der EU[32] für 2020 angenommenen Kapazitäten bereits 2008 deutlich überschritten. Die IEA erwartete in ihrem World Energy Outlook 2002 für 2020 einen Anstieg der Windenergieproduktion auf 100.000 MW.[33] Dieser Wert wurde 2008, wenige Jahre nach der Veröffentlichung der Prognose, von der tatsächlichen installierten Leistung um mehr als 20 % übertroffen.[34]

Die größten Unterschiede zwischen Prognose und Realität des Ausbaus der erneuerbaren Energien in Deutschland ergeben sich für die vom Bundeswirtschaftsministerium in Auftrag gegebenen Studien der Prognos AG. Zum Beispiel war die reale Nutzung erneuerbarer Energien im Jahr 2000 fast dreimal so hoch wie die Prognose von 1998. Die für das Jahr 2020 erwartete Stromproduktion erreichten die erneuerbaren Energien bereits 2007.[35] Der Prognos-Studie von 1984 zufolge würden Windenergie, Photovoltaik, Biogas, Geothermie, Solarthermie und Biokraftstoffe selbst im Jahr 2000 gar keinen Beitrag zur Energieversorgung leisten.[36] Die in der Prognos-Studie von 2005 für 2030 vorhergesagten Werte für Strom aus Bioenergie und Photovoltaik und für Wärme aus erneuerbaren Energien wurden bereits 2007, nur zwei Jahre nach Veröffentlichung der Studie, erreicht. Die prognostizierte Biokraftstoffmenge für 2020 wurde ebenfalls schon 2007 übertroffen.[37]

Deutschland

Primärenergieverbrauch nach Energieträgern in Deutschland[38]
Energieträger 2005 2006 2007
Mineralöl 36,0 35,6 33,8
Steinkohle 13,0 13,2 14,1
Braunkohle 11,0 10,8 11,7
Erdgas, Erdölgas 22,0 22,6 22,7
Kernenergie 12,0 12,5 11,1
Wasser- und Windkraft 1)3) 1,0 1,2 1,6
Außenhandelssaldo Strom −0,2 0,0 0,1
Sonstige 2) 5,0 4,1 5,0

1) Windkraft ab 1995
2) u.a. Brennholz, Brenntorf, Klärschlamm, Müll, sonstige Gase
3) inkl. Fotovoltaik

Im Jahr 2007 lag der aus erneuerbaren Energien gedeckte Endenergieverbrauch in Deutschland bei 9,8 % des Gesamtverbrauchs. Den größten Anteil (etwa 69 %) hatten feste und flüssige biogene Brennstoffe, welche insbesondere in der Wärmeerzeugung und als Kraftstoffe Verwendung finden.

Anteil der EE am Primär- und Endenergieverbrauch in %[39]
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Anteil am Primärenergieverbrauch 2,0 2,1 2,2 2,6 2,7 3,0 3,5 3,9 4,7 5,5 6,7 7,1
davon Stromerzeugung 0,8 0,9 1,1 1,1 1,4 1,6 1,8 2,1 2,5 3,1 3,3
Wärmebereitstellung 1,3 1,3 1,4 1,4 1,5 1,8 1,9 2,0 2,3 2,6 2,8
Kraftstoffverbrauch 0,03 0,03 0,06 0,1 0,1 0,2 0,3 0,6 1,0 1,2 1,0
Anteil am Endenergieverbrauch 2,9 3,1 3,3 3,8 3,8 4,3 4,9 5,5 6,6 8,1 9,8 9,7
davon Stromerzeugung 4,8 5,5 6,3 6,7 7,8 7,9 9,3 10,4 11,7 14,0 14,8
Wärmebereitstellung 3,5 3,5 3,9 3,8 3,9 4,6 4,9 5,4 6,1 7,5 7,7
Kraftstoffverbrauch 0,2 0,2 0,4 0,6 0,9 1,4 1,9 3,8 6,3 7,3 6,1

Im Gegensatz zu den Kraftstoffen und der Wärmeerzeugung spielte Biomasse bisher für die Stromerzeugung mit rund 25 % (anteilig aus EE) eine weniger große Rolle, wohingegen Windenergie (42 %) und Wasserkraft (30 %) gewichtigere Anteile an der Stromgewinnung aus erneuerbaren Energien hatten.

Bruttostromerzeugung aus erneuerbaren Energien in Deutschland
Die Stromerzeugung aus erneuerbaren Energien machte im Jahr 2008 in Deutschland etwa 14,8 % der Gesamtstromerzeugung aus


Stromerzeugung in Deutschland in GWh[39]
Jahr Gesamt-
erzeugung[40]
Summe EE Wasserkraft Windenergie Biomasse und -gas Photovoltaik Geothermie
2008[41] 91.352 14,8 % 20.900 3,4 % 40.400 6,6 % 26.000 4,2 % 4.000 0,6 % 18
2007 632.000 87.450 14,2 % 21.700 3,4 % 39.500 6,4 % 23.750 3,9 % 3.500 0,6 % 0,4
2006 635.774 72.049 11,1 % 20.000 3,1 % 30.700 4,8 % 19.129 2,8 % 2.220 0,3 % 0,4
2005 620.285 63.569 10,2 % 21.524 3,5 % 27.229 4,4 % 13.534 2,2 % 1.282 0,2 % 0,2
2004 616.194 57.529 9,3 % 21.000 3,4 % 25.509 4,1 % 10.463 1,7 % 557 0,1 % 0,2
2003 607.378 48.674 8,0 % 20.350 3,4 % 18.859 3,1 % 9.132 1,5 % 333 0,1 % 0
2002 586.688 45.760 7,8 % 23.824 4,1 % 15.786 2,7 % 5.962 1,0 % 188 0,0 % 0
2001 586.411 39.073 6,7 % 23.383 4,0 % 10.509 1,8 % 5.065 0,9 % 116 0,0 % 0
2000 576.543 36.679 6,4 % 24.936 4,3 % 7.550 1,3 % 4.129 0,7 % 64 0,0 % 0
1999 556.252 29.890 5,4 % 21.300 3,8 % 5.528 1,0 % 3.020 0,5 % 42 0,0 % 0
1998 557.303 26.321 4,7 % 19.000 3,4 % 4.489 0,8 % 2.800 0,5 % 32 0,0 % 0
1997 552.313 24.505 4,4 % 19.000 3,4 % 3.000 0,5 % 2.479 0,4 % 26 0,0 % 0
1996 552.621 23.219 4,2 % 18.800 3,4 % 2.200 0,4 % 2.203 0,4 % 16 0,0 % 0
1995 536.816 25.431 4,7 % 21.600 4,0 % 1.800 0,3 % 2.020 0,4 % 11 0,0 % 0
1994 528.465 23.018 4,4 % 20.200 3,8 % 940 0,2 % 1.870 0,4 % 8 0,0 % 0
1993 527.115 21.246 4,0 % 19.000 3,6 % 670 0,1 % 1.570 0,3 % 6 0,0 % 0
1992 538.164 20.378 3,8 % 18.600 3,5 % 230 0,0 % 1.545 0,3 % 3 0,0 % 0
1991 540.210 17.492 3,2 % 15.900 2,9 % 140 0,0 % 1.450 0,3 % 2 0,0 % 0
1990 549.900 18.463 3,4 % 17.000 3,1 % 40 0,0 % 1.422 0,3 % 1 0,0 % 0

Österreich

Zusammensetzung des Österreichischen Bruttoinlandsverbrauchs [42]
Stromerzeugung aus erneuerbaren Energien in Österreich 2003 bis 2008

Mit einem Anteil von ca. 22,7 % machten die erneuerbaren Energien fast ein Viertel des österreichischen Bruttoinlandsverbrauchs von Energie im Jahr 2001 aus.[42] Der Anteil der erneuerbaren Energien an der Stromerzeugung lag 2006 bei etwa 65 %. Da Österreich in den Wintermonaten in erheblichem Umfang elektrische Energie importiert,[42][43] lag der Anteil am Stromverbrauch jedoch nur bei 45 %.[43]

Stromerzeugung in Österreich in GWh[43]
Jahr Gesamt-
erzeugung
Summe EE Wasserkraft Windenergie Biomasse
und -gas
Photovoltaik Geothermie
2008[44] 63.500 39.700 63 % 1.988 2.489 17 2
2007[45] 2.019 2.194 15 2
2006 63.919 42.344 66,2 % 37.278 58,3 % 1.752 2,7 % 3.300 5,2 % 12 0,0 % 3
2005 66.479 42.911 64,5 % 39.019 58,7 % 1.331 2,0 % 2.545 3,8 % 13 0,0 % 2
2004 64.739 42.457 65,6 % 39.462 61,0 % 926 1,4 % 2.053 3,2 % 13 0,0 % 2
2003 60.219 37.467 62,2 % 35.292 58,6 % 366 0,6 % 1.794 3,0 % 11 0,0 % 3
2002 62.671 43.767 69,8 % 42.057 67,1 % 203 0,3 % 1.500 2,4 % 3 0,0 % 3

Schweiz

In der Schweiz werden erneuerbare Energien sehr intensiv genutzt. Im Jahr 2004 betrug deren Anteil am Schweizer Endenergieverbrauch 16,5 %. Dieser Anteil wurde hauptsächlich durch Wasserkraft (70 %), Biomasse (25 %, inkl. Abfall) und Geothermie (3,5 %) gedeckt.[46] Dabei ist jedoch zu beachten, dass die Wasserkraft in der Schweiz bereits seit Jahrzehnten aufgrund vorteilhafter natürlicher Grundlagen intensiv genutzt wird. Bei den neuen erneuerbaren Energien weist das Land bei weitem nicht den deutschen Ausbaustandard auf, die Einspeisevergütung für solche Energieträger wurde erst 2008 eingeführt. Die schweizerischen Pumpspeicherkraftwerke importieren zudem in der Nacht aus dem Ausland preiswerten Strom, um Wasser in die Stauseen hochzupumpen. Dieser Strom stammt zu einem großen Teil aus nicht erneuerbaren Energiequellen.

Europäische Union

Anteil erneuerbarer Energien am Primärenergieverbrauch in der EU im Jahr 2005

Der durchschnittliche Anteil der erneuerbaren Energien am Primärenergieverbrauch aller EU-25-Staaten (Malta ausgenommen) lag im Jahr 2005 laut einem Vergleich des BMU bei 6,5 %. Spitzenreiter waren Lettland (36,3 %), Schweden (29,8 %) und Finnland (23,2 %). Österreich nahm mit 20,5 % den vierten Platz ein, während Deutschland mit 4,8 % unter dem Durchschnitt lag.[47]

Die Europäische Union verpflichtete sich am 9. März 2007 verbindlich, den Ausstoß von Treibhausgasen bis 2020 um ein Fünftel im Vergleich zu 1990 zu verringern und den Anteil erneuerbarer Energien im Durchschnitt auf 20 Prozent bis 2020 zu erhöhen.[48] Im Januar 2008 beschloss die Europäische Kommission verbindliche Vorgaben für die einzelnen Mitgliedsstaaten.[49] Die Richtlinie 2001/77/EG verpflichtet die Mitgliedstaaten zur Festlegung nationaler Richtziele für den Anteil erneuerbarer Energien am Stromverbrauch, wobei den einzelnen Staaten hinsichtlich der Fördersysteme im Einzelnen ausdrücklich freie Hand gelassen wird.[50]


Literatur

Bücher

  • Bechberger, Mischa und Danyel Reiche: Ökologische Transformation der Energiewirtschaft – Erfolgsbedingungen und Restriktionen. Schmidt, Berlin 2006, ISBN 3-503-09313-3.
  • Bührke, Thomas und Wengenmayr, Roland: Erneuerbare Energie – Alternative Energiekonzepte für die Zukunft. Wiley-VCH, Weinheim 2006, ISBN 978-3-527-40727-9, ISBN 3-527-40727-8.
  • Fell, Hans-Josef und Pfeiffer, Carsten (2006): Chance Energiekrise – Der solare Ausweg aus der fossil-atomaren Sackgasse Solarpraxis, Berlin, ISBN 3-934595-64-2.
  • Geitmann, Sven (2005): Erneuerbare Energien und alternative Kraftstoffe. Hydrogeit Verlag, Kremmen (2. Aufl.), ISBN 3-937863-05-2.
  • Gründinger, Wolfgang (2006): Die Energiefalle. Rückblick auf das Erdölzeitalter. C. H. Beck Verlag, München.
  • Kaltschmitt, Martin, Andreas Wiese und Wolfgang Streicher (Hrsg.) (2003): Erneuerbare Energien. Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Springer Verlag, Heidelberg (3. Aufl.), ISBN 3-540-43600-6.
  • Kleidon, Axel und Ralph D. Lorenz (2004): Non-Equilibrium Thermodynamics and the Production of Entropy. Springer Verlag, Heidelberg, ISBN 3-540-22495-5.
  • David J. C. MacKay: Sustainable Energy – Without the Hot Air UIT 2008, ISBN 978-1-906860-01-1, (auch online verfügbar).
  • Quaschning, Volker (2009): Erneuerbare Energien und Klimaschutz. Carl Hanser Verlag, München (2. Aufl.), ISBN 978-3-446-41961-2.
  • Quaschning, Volker (2009): Regenerative Energiesysteme. Carl Hanser Verlag, München (6. Aufl.), ISBN 978-3-446-42151-6.
  • Scheer, Hermann (2005): Solare Weltwirtschaft – Strategie für eine ökologische Moderne. Kunstmann, München (5. Aufl.), ISBN 3-88897-314-7.
  • Springmann, Jens-Peter (2005): Förderung erneuerbarer Energieträger in der Stromerzeugung – Ein Vergleich ordnungspolitischer Instrumente. DUV, Wiesbaden, ISBN 3-8350-0038-1.

Aufsätze und Studien

Einzelnachweise

  1. Richtlinie zur Förderung der Nutzung von Energie aus erneuerbaren Quellen und zur Änderung und anschließenden Aufhebung der Richtlinien 2001/77/EG und 2003/30/EG
  2. BMWi Energiestatistiken Seite 20, Stand: November 2008
  3. BMU Erneuerbare Energien in Zahlen Internet Update Stand: Dezember 2008, S. 8
  4. BMU Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2008 Stand: April 2009
  5. Daten des Deutschen Zentrums für Luft- und Raumfahrt (DLR) 2005
  6. sevenload.com: Video: Das regenerative Kombikraftwerk, siehe auch [1]
  7. Der große Blackout (Film im wmv-Format), 3sat hitec vom 14. Juni 2007, Alternativlink
  8. nano.de: Video: Spanien baut eines der weltgrößten Solarkraftwerke. Auch mit Informationen zu möglicher Energieerzeugung in Nordafrika. 9. Juni 2008
  9. Sustainable Energy – Without the Hot Air (englisch) Fünf durchgerechnete Szenarien, von konservativer bis grüner Energieversorgung von Großbritannien
  10. Methan und Lachgas: Die vergessenen Klimagase, WWF, 2007
  11. Marion Lienhard, Anna Vettori, Rolf Iten: PEAK OIL – Chance für einen nachhaltigen Umgang mit Energie?, Hrsg.: INrate, Dezember 2006
  12. video: Kombikraftwerk – Strom ohne Atom und Kohle
  13. 3sat.de: Norwegen könnte die Batterie Europas werden
  14. video: Doku – Der große Blackouts und die Strategien dagegen (3 Teile)
  15. Craig Morris: Keine Spur von einer Wasserstoffwirtschaft? Telepolis 4. November 2004
  16. Wasserstoff: Der Kraftstoff der Zukunft?Telepolis, 26. Februar 2007
  17. Unterwegs im Wasserstoff-7erTechnology Review, 22. November 2006
  18. Wasserstoff bei niedrigem Druck speichernTelepolis 20. Oktober 2004
  19. „Pack den Blechroboter in den Tank“Telepolis 20. Oktober 2005
  20. Plexiglasröhren statt Raffinerien? – Telepolis, 23. Februar 2006
  21. Bewertung alternativer Treibstoffe und Antriebe (Stand 1. September 2006)
  22. Forschung auf dem Gebiet u.A. der Entropiebilanzierung: Max-Planck-Institut für Biogeochemie in Jena
  23. Basler Zeitung: Geothermie-Erdstösse: 3 bis 5 Millionen Franken Schaden
  24. Ausbauprognose des Bundesverbandes Erneuerbare Energien e.V. laut Zeitschrift "Immissionsschutz" Juni 2009
  25. n-tv.de, Grüner Goldrausch – Ölpreis zeigt Wirkung 1. Juli 2008
  26. unep.org, Clean Energy Investments Charge Forward Despite Financial Market Turmoil, abgerufen am 2. Juli 2008
  27. BMU 17. September 2007
  28. Bundesministerium für Wirtschaft und Technologie (BMWi): Sichere, bezahlbare und umweltverträgliche Stromversorgung in Deutschland – Geht es ohne Kernenergie? Berlin 2008
  29. Informationsplattform der deutschen Übertragungsnetzbetreiber: EEG-Mittelfristprognose: Entwicklungen 2000 bis 2015, 11. Mai 2009
  30. http://www.bee-ev.de/_downloads/publikationen/studien/2009/090128_BEE-Studie_Branchenprognose_Stromversorgung2020.pdf
  31. http://www.unendlich-viel-energie.de/uploads/media/Prognose-Analyse_mai09.pdf
  32. EWEA, Response to the European Commission’s Green Paper: Towards a European strategy for the security of energy supply. November 2001
  33. IEA, 2002: World Energy Outlook 2002. Paris 2002
  34. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU): Erneuerbare Energien in Zahlen. Nationale und internationale Entwicklung. Berlin 2009
  35. Prognos AG, 1998: Möglichkeiten der Marktanreizförderung für erneuerbare Energien auf Bundesebene unter Berücksichtigung veränderter wirtschaftlicher Rahmenbedingungen.
  36. Prognos AG, 1984: Energieprognose – Die Entwicklung des Energieverbrauchs in der Bundesrepublik Deutschland und seine Deckung bis zum Jahr 2000.
  37. Prognos AG, 2005: Energiereport IV. Die Entwicklung der Energiemärkte bis zum Jahr 2030. Energiewirtschaftliche Referenzprognose. Untersuchung im Auftrag des Bundesministeriums für Wirtschaft und Arbeit.
  38. BMWi Energiestatistiken Seite 4
  39. a b Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2007, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit Stand: 12. März 2008
  40. Tabellendokument auf www.bmwi.de (Excel), Stand: Oktober 2008
  41. BMU Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2008, S. 14 Stand: April 2009
  42. a b c Österreichischer Energiebericht 2003, aufgerufen Juli 2006
  43. a b c Energiestatistik e-control
  44. e-control Ökomengen Gesamtjahr 2008], aufgerufen 1. Jänner 2010
  45. e-control Ökomengen Gesamtjahr 2008], aufgerufen 1. Jänner 2010
  46. Green Power in Switzerland, S. 3, aufgerufen im August 2006
  47. Erneuerbare Energien in Zahlen – nationale und internationale Entwicklung, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Stand: November 2007
  48. Merkel schafft Kompromiss, n-tv, 9. März 2007
  49. Erneuerbare Energien in der EU, Der Tagesspiegel, 24. Januar 2008
  50. Datenbank des BMU zu erneuerbaren Energien

Siehe auch

Portal: Umwelt- und Naturschutz – Übersicht zu Wikipedia-Inhalten zum Thema Umwelt- und Naturschutz

Vorlage:Link FA