aus Wikipedia, der freien Enzyklopädie
Automatische Archivierung
u
i
n
d
=
∮
E
→
d
s
→
=
−
N
d
Φ
d
t
{\displaystyle u_{ind}=\oint {\vec {E}}d{\vec {s}}=-N{{d\Phi } \over {dt}}}
∮
E
→
d
s
→
1
=
−
u
1
=
−
N
d
Φ
1
d
t
{\displaystyle \oint {\vec {E}}d{\vec {s}}1=-u_{1}=-N{{d\Phi 1} \over {dt}}}
−
u
1
(
t
)
N
1
=
∮
s
1
E
→
d
s
→
1
N
1
=
−
d
Φ
d
t
=
∮
s
2
E
→
d
s
→
2
N
2
=
−
u
2
(
t
)
N
2
{\displaystyle {{-u_{1}(t)} \over {N_{1}}}={{\oint _{s1}{\vec {E}}d{\vec {s}}_{1}} \over {N_{1}}}={{-d\Phi } \over {dt}}={{\oint _{s2}{\vec {E}}d{\vec {s}}_{2}} \over {N_{2}}}={{-u_{2}(t)} \over {N_{2}}}}
N
2
⋅
u
1
(
t
)
=
N
1
⋅
u
2
(
t
)
{\displaystyle N_{2}\cdot u_{1}(t)=N_{1}\cdot u_{2}(t)}
Φ
2
−
Φ
1
=
∫
t
1
t
2
u
1
(
t
)
d
t
{\displaystyle \Phi _{2}-\Phi _{1}=\int _{t_{1}}^{t_{2}}u_{1}(t)dt}
μ
r
→
∞
{\displaystyle \mu _{r}\to \infty }
∮
H
d
s
=
N
1
⋅
i
1
(
t
)
+
N
2
⋅
i
2
(
t
)
=
0
{\displaystyle \oint Hds=N_{1}\cdot i_{1}(t)+N_{2}\cdot i_{2}(t)=0}
N
1
⋅
i
1
=
−
N
2
⋅
i
2
{\displaystyle N_{1}\cdot i_{1}=-N_{2}\cdot i_{2}}
u
i
n
d
=
∮
E
→
d
s
→
{\displaystyle u_{ind}=\oint {\vec {E}}d{\vec {s}}}
∮
E
→
d
s
→
{\displaystyle \oint {\vec {E}}d{\vec {s}}}
∮
E
→
d
s
→
=
0
{\displaystyle \oint {\vec {E}}d{\vec {s}}=0}
Φ
(
t
2
)
−
Φ
(
t
1
)
=
−
1
N
1
⋅
∫
t
1
t
2
u
1
(
t
)
d
t
<
∞
{\displaystyle \Phi (t_{2})-\Phi (t_{1})={{-1} \over N_{1}}\cdot \int _{t1}^{t2}u_{1}(t)dt<\infty }
∮
H
d
s
=
∑
I
=
0
{\displaystyle \oint Hds=\sum I=0}