Diskussion:Riemannscher Krümmungstensor
Text entfernt
In Analogie betrachte man den Graph einer gekrümmten Funktion, z. B. von .
Das Krümmungsverhalten wird durch die Ableitungen der Funktion beschrieben.
Der Graph der Funktion ist rechtsgekrümmt, wenn ist. In dem Beispiel ist . Man sagt die Funktion ist linksgekrümmt.
Bei einer gekrümmten Fläche im Raum kann die Krümmung in jeder Richtung unterschiedlich sein, zur Beschreibung der Krümmung in eine Richtung verwendet man Richtungsableitungen.
Richtungsableitungen können durch partielle Ableitungen ausgedrückt werden. Partielle Ableitungen gehen in die Darstellung des Krümmungstensors ein.
Passt nicht zum Artikel. Bevor das wieder rein kommt, muss das geordnet und vernünftig ausformuliert werden. -- 217.232.44.248 18:16, 8. Aug. 2007 (CEST)
Man sollte vlt. bei dem Ausflug zur Ricci Krümmung erwähnen, dass diese Formel nur für eine orthonormal Basis richtig ist. Im Allgemeinen benötigt man die Metrik um die Spur zu berechnen.
Konstantin
Schreibweise: Riemannscher Krümmungstensor vs. riemannscher Krümmungstensor
Benutzer:Kanapee änderte gerade die Schreibweise von Riemannscher Krümmungstensor in riemannscher Krümmungstensor. Ich wollte nur gerade nachfragen, ob es da einen Konsenz über die verschiedenen Artikel gibt. Auf Riemannsche Vermutung wird klein geschrieben, auf Riemannsche Xi-Funktion groß, auf Riemannsche Mannigfaltigkeit klein, auf Bernhard_Riemann werden beide Schreibweisen genutzt. Auf Hierarchie mathematischer Strukturen heißt es Hermitesche Form, auf Glossar mathematischer Attribute hermitesche Form, auf Chernklasse eines Hermiteschen Vektorbündels. Ich wäre eigentlich eher für Großschreibung, aber viel gegen Kleinschreibung habe ich jetzt auch nicht. -- JanCK 01:23, 14. Apr. 2008 (CEST)
- Es ist glaub ich Konsens, allgemein klein zu schreiben in Übereinstimmung mit der Prophezeihung. -- Ben-Oni 16:05, 14. Apr. 2008 (CEST)
- Nützlicher Hinweis: Man kann unsinnige „Prophezeihungen“ der Rechtschreibkommission leicht umgehen, indem man überall, wo dies möglich ist, Alternativformulierungen benutzt (z.B. "riemannscher Krümmungstensor" -> "Riemanntensor", 'Trick 17 A1'). Meistens sind die Alternativformulierungen sogar besser. Im Übrigen habe ich mich vor Jahren in einer ähnlichen Sache einmal an die damalige Kommissionsvorsitzende gewandt, und diese hat mir geschrieben, dass der Fachmann immer eingebürgerte Alternativen benutzen könne (z.B. der Physiker den eingebürgerten Begriff der "potentiellen Energie" anstelle der "potenziellen Energie"). Ich bin der Meinung, dass die Wikipedia diesbezüglich einmal konkret tätig werden sollte.- MfG, 87.160.89.235 13:27, 1. Apr. 2009 (CEST)
Unterschiede und Gemeinsamkeiten zum Krümmungsbegriff in den Eichtheorien
Worin bestehen die Unterschiede und eventuelle Gemeinsamkeiten zum Krümmungsbegriff in den Quantenfeldtheorien (Eichtheorien, Yang-Mills-Theorien)? Dazu einige Diskussionsbemerkungen, die m.E. genau auf diese Diskussionsseite (nicht aber in den Artikel) passen:
Dort wird ein (externes) Faserbündel benutzt, und die Krümmung bezieht sich explizit darauf, hier dagegen auf das (interne) Tangentialbündel und die davon ausgehende "Parallelübetragung" (mit der Riemann- bzw. Einstein-Metrik als wichtigem Zusatz). Es ergeben sich so (nicht nur im Formalen) wesentliche Unterschiede. Ein weiterer, wesentlicher Unterschied ist natürlich, dass es sich hier um eine nichtlokale Theorie handelt (nämlich um die ART Einsteins), dort aber um lokale Quantenfeldtheorien. Es sind aber trotzdem auch wesentliche Gemeinsamkeiten vorhanden: Die Grundgleichungen der Theorie (z.B. die Einsteinschen Feldgleichungen bzw. das zugrunde liegende, auf David Hilbert zurückgehende Wirkungsfunktional) benutzen ebenso wie z.B. die Yang-Mills-Theorie wesentlich die Krümmung des Tangential- bzw. Faserbündels. Physikalisch wird das Wirkungsfunktional der Yang-Mills-Theorie, d.h. deren Krümmungsbegriff, mit den "Feldern" dieser Eichtheorien und deren invarianter "Energie" ("kinetischer" minus "potentieller" Anteil) in Zusammenhang gebracht. D.h., der Energiebegriff dieser Eichtheorien baut sehr indirekt auf dem zur Theorie gehörenden Krümmungsbegriff auf, und es lassen sich auch dort die eben genannten Anteile unterscheiden, weil die Minkowski-Metrik (als Grenzfall der Einstein-Metrik) auch dort wesentlich ist. - MfG, in der Hoffnung auf neue Einsichten, auf dass "die Physik nicht für die Physiker zu schwer" werde, um abermals David Hilbert zu zitieren; 87.160.124.168 09:35, 2. Apr. 2009 (CEST)
- Ich weiß wohl, dass der Feldstärketensor dem Krümmungstensor sehr ähnlich ist. Die Wirkung ist aber im YM-Fall substanziell verschieden zur ART, weil für die Krümmung eines Faserbündels (liealgebrenwertige Zweiform) nichts dem Riccitensor und der Skalarkrümmung Vergleichbares existiert. Der Energie-Impuls-Tensor und damit auch die Energie ist für YM-Theorien natürlich eindeutig durch den Feldstärketensor bestimmt. Aber die Aussage, dass "der Krümmungstensor aus der Feldenergie des Eichfeldes gebildet" werde, ist etwas unzutreffend. Ich denke, dass man aufgrund der Spurbildung nicht einmal aus dem vollen Energie-Impuls-Tensor den Feldstärketensor einer YM-Theorie zurückgewinnen kann, gebe aber zu, dass ich das jetzt nicht im Detail durchgerechnet habe. Fazit: Die Analogie zur Krümmung von allgemeinen Faserbündeln und damit dann auf physikalischer Ebene zu Eichtheorien kann gerne reingebracht werden, aber dann in mathematisch etwas glaubwürdigerer und physikalisch richtigerer Form bitte. -- Ben-Oni 13:54, 2. Apr. 2009 (CEST)
- Die Spur einer Matrix ist i.W. (das heißt, bis auf Logarithmenbildung) das Produkt aller Eigenwerte (Diagonalisierungsfähigkeit der Matrix vorausgesetzt). Das ist in der Tat viel weniger als benötigt, keineswegs jeder einzelne Eigenwert, sondern nur das Produkt; also analog zur Gaußkrümmung. Man kann aber m.E. sehr wohl sagen, dass auch in der Yang-Mills-Theorie das Wirkungsfunktional aus einer "Krümmung" gebildet wird, sogar in dort angegebener, ganz präziser Weise (die mit der Spur einer Größe zusammenhängt, die von den Mathematikern "Krümmung eines Faserbündels" und von den Physikern "Yang-Mills-Feldstärke" genannt wird), nicht mehr, aber auch nicht weniger. Ricci-Tensor oder skalare Krümmung: etwas Analoges dazu sehe ich in der Tat in der Yang-Mills-Theorie derzeit nicht. Aber auch diese Größen sind m.E. eher "sekundär" und hängen wesentlich mit der Krümmung selbst zusammen. - Wie gesagt, "nichts davon in den Artikel"; wir diskutieren nur über potenziell richtige Formulierungen und Verständnisfragen, in der Hoffnung, etwas relevantes zu lernen und in der Einsicht, dass auch der Diskussionsteil eines Artikels nützlich sein kann. - Auf jeden Fall mfG, 87.160.74.194 21:49, 5. Apr. 2009 (CEST)
- P.S. Konkrete Frage: Wie würde die Krümmungsform A^A einer Yang-Mills-Theorie als Riemanntensor lauten? Und was ist die konkrete Analogie zwischen den Strukturkonstanten dieser Theorie und den Riemannschen Christoffelsymbolen? Mir scheint, dass die hauptsächlichen Dinge aus der in beiden Theorien gemeinsamen Existenz einer nichttrivialen "kovarianten Ableitung" folgen.