Längenproblem
Das Längenproblem bestand seit dem Zeitalter der Seefahrt und der großen Entdeckungen. Es besteht in der Schwierigkeit, die geografische Länge nur 10-100mal ungenauer ermitteln zu können als die geografische Breite.
Die Breite lässt sich durch Messung von Vertikalwinkeln relativ einfach bestimmen - siehe Navigation und Astrogeodäsie. Man muss im Prinzip nur die Höhe des Polarsterns oder die Mittagshöhe der Sonne messen.
Mit der Länge ist es jedoch schwieriger. Sie hängt mit der Erdrotation zusammen und erfordert daher eine genaue Zeitmessung, die mit den üblichen Uhren um 1700 - selbst auf festem Boden - nur auf etwa 1 Minute pro Tag möglich war. Auf einer Schiffsreise wächst dadurch der Fehler derPositionsbestimmung täglich um mehrere km oder - bei wochenlangen Atlantik- oder Indienfahrten - auf 100 km und mehr.
Die Alternative zur Uhr waren zwei eher komplizierte Methoden: mit Monddistanzen oder Erdmagnetfeld. Das "Längenproblem" war für die Seefahrt so gravierend, dass Spaniens König 1600 einen Preis aussetzte und Englands Parlament 1714 einen weiteren von 20.000 Pfund.
Ein Tischler und Uhrmacher aus England, John Harrison (1693 - 1762) steigerte durch epochale Erfindungen (Hemmung, Temperatur-Kompensation) und präzise Produktion von schmierungsfreien Holzrädern) die Genauigkeit der Uhren auf das 10- bis 100-fache. Obwohl schon seine erste Uhr H1 1735 die Preisbedingungen fast erfüllte, mußte er die H2 bis H5 bauen und erhielt das Preisgeld dennoch erst als Achtzigjähriger.
Siehe auch: Chronometer,Astrolab,GPS