OSI-Modell
Das OSI-Modell (engl. Open Systems Interconnection Reference Model) ist ein offenes Schichtenmodell, das seit den 70er Jahren entwickelt und standardisiert wurde. Es teilt die verschiedenen Problembereiche der Netzwerkkommunikation in sieben Schichten auf, die aufeinander aufsetzen.
Weitere Bezeichnungen für das Modell sind ISO/OSI-Modell, OSI-Referenzmodell, OSI-Schichtenmodell oder 7-Schichten-Modell.
Ein Netzwerk stellt seinen Benutzern Dienste bereit. Im einfachsten Fall überträgt es Daten von A nach B. Hierzu müssen jedoch tatsächlich eine Vielzahl von Aufgaben bewältigt werden. Die Probleme, die dabei gelöst werden müssen, reichen von Fragen der elektronischen Übertragung der Signale über eine geregelte Reihenfolge in der Kommunikation (wer darf wann senden?) bis hin zu abstrakteren Aufgaben, die sich innerhalb der kommunizierenden Anwendungen ergeben. Die Vielzahl dieser Probleme und Aufgaben lässt es sinnvoll erscheinen, das Netz nicht als einen einzigen Dienstleister zu betrachten, sondern seine Dienste ganz bestimmten Kategorien zuzuordnen. Als besonders geeignet hat sich die Aufteilung in Schichten erwiesen.
Im OSI-Modell nimmt der Abstraktionsgrad der Funktionen von Schicht zu Schicht zu. Die Daten werden von einer Schicht zur nächsten weitergereicht, d.h. die Kommunikation erfolgt in vertikaler Richtung. Auf der Senderseite läuft die Kommunikation von oben nach unten und auf der Empfängerseite von unten nach oben.
Das Modell besteht aus sieben Schichten (engl. layers). Für jede Schicht sind die Dienste und Funktionen definiert, die auf ihr erfüllt werden sollen. Da jedoch keine Standards definiert sind, die diese Dienste und Funktionen verwirklichen, kann dies u.U. durch unterschiedliche Protokolle erfüllt werden.
- Anwendungsschicht, Schicht 7, die oberste der sieben hierarchischen Schichten.
- (engl. application layer, auch: Verarbeitungsschicht, Anwenderebene) Die Anwendungsschicht stellt den Anwendungen eine Vielzahl an Funktionalitäten zur Verfügung (z.B. Datenübertragung, E-Mail, Virtual Terminal bzw. Remote login etc.)
- Darstellungsschicht, Schicht 6.
- (engl. presentation layer, auch: Datendarstellungsschicht, Datenbereitstellungsebene) Die Darstellungsschicht standardisiert die Datenstrukturen und ermöglicht somit den semantisch korrekten Datenaustausch zwischen unterschiedlichen Systemen (u.a. Kodierung, Kompression, Kryptographie)
- Sitzungsschicht, Schicht 5.
- (engl. session layer, auch: Kommunikationssteuerungsschicht, Steuerung logischer Verbindungen, Sitzungsebene) Um Zusammenbrüche der Sitzung und ähnliche Probleme zu beheben, stellt die Sitzungsschicht Dienste für einen organisierten und synchronisierten Datenaustausch zur Verfügung. Zu diesem Zweck werden so genannte Token eingeführt.
- Transportschicht, Schicht 4.
- (engl. transport layer, auch: Ende-zu-Ende-Kontrolle, Transport-Kontrolle) Die Transportschicht ist die unterste Schicht, die eine vollständige Ende-zu-Ende Kommunikation (zwischen Sender und Empfänger) zur Verfügung stellt, d.h. für alle Schichten oberhalb der Netzwerkschicht ist die darunterliegende Netzwerktopologie transparent. Zu den Aufgaben der Transportschicht zählt die Segmentierung von Datenpaketen und die Stauvermeidung (engl. congestion control).
- Netzwerkschicht, Schicht 3.
- (engl. network layer, auch: Vermittlungsschicht, Paketebene) Die Netzwerkschicht sorgt für die Weitervermittlung von Datenpaketen. Da nicht immer eine direkte Kommunikation zwischen Absender und Ziel möglich ist, müssen Pakete weitergeleitet werden. Weitervermittelte Pakete gelangen nicht in die höheren Schichten, sondern werden mit einem neuen Zwischenziel versehen und an den nächsten Host gesendet. Zu den Aufgaben der Netzwerkschicht zählt der Aufbau und die Aktualisierung von Routingtabellen, sowie die Flusskontrolle.
- Sicherungsschicht, Schicht 2.
- (engl. data link layer, auch: Verbindungssicherungsschicht, Verbindungsebene, Prozedurebene) Aufgabe der Sicherungsschicht ist es, eine sichere (d.h. fehlerfreie) Verbindung zu gewährleisten und den Zugriff auf das Übertragungsmedium zu regeln. Daher teilt man die Schicht in zwei Subschichten auf: die LLC-Schicht (logical link control) und die Mediumzugriffsschicht (medium access control layer, MAC-Layer). Die Aufgaben der LLC-Schicht sind das Aufteilen des Bitdatenstromes in Datenrahmen (frames) und das Hinzufügen von Prüfsummen sowie das Verwalten von Quittungen und die Flusskontrolle. Die Mediumzugriffsschicht regelt konkurrierende Zugriffe mehrerer Stationen auf ein gemeinsames Übertragungsmedium und behandelt ggf. aufgetretene Kollisionen.
- Physikalische Schicht, Schicht 1, die niedrigste Schicht.
- (engl. physical layer, auch: Bitübertragungsschicht, physikalische Ebene) Die physikalische Schicht ist für die eigentliche Bitübertragung der Daten zuständig. Hierzu ist eine Standardisierung der Netzwerk-Leitungen und -Anschlüsse sowie ihrer physikalischen Eigenschaften nötig. Die gemeinsame Nutzung eines Übertragungsmediums kann auf dieser Schicht durch ein statisches Multiplexing erfolgen.
Das OSI-Referenzmodell wird oft herangezogen, wenn es um das Design von Netzwerkprotokollen und die theoretische Betrachtung geht. Zusammen mit diesem Modell sind Netzwerkprotokolle entwickelt worden, die jedoch heute kaum eine Bedeutung besitzen. In der Praxis wird hauptsächlich die Familie der TCP/IP-Protokolle eingesetzt. Da das TCP/IP-Referenzmodell sehr speziell auf den Zusammenschluss von Netzen (Internetworking) zugeschnitten ist, bietet das OSI-Referenzmodell einen umfassenderen Ansatz für die Betrachtung von Netzwerkprotokollen.
Das OSI-Modell im Überblick (im Vergleich dazu das TCP/IP-Referenzmodell):
OSI-Schicht | TCP/IP-Schicht | Kommunikation | |
---|---|---|---|
7 | Anwendung | Anwendung | Ende zu Ende (Multihop) |
6 | Darstellung | -- | |
5 | Sitzung | ||
4 | Transport | Transport | |
3 | Netzwerk | Internet | Punkt zu Punkt |
2 | Sicherung | Host an Netz |
|
1 | Bitübertragung |
Zur Einordnung von Netzwerkprotokollen in das OSI-Modell siehe auch:
Das OSI-Modell betreffende Standards: