Zum Inhalt springen

Integralgleichung

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 3. Juli 2008 um 12:50 Uhr durch 137.226.110.4 (Diskussion) (Dualität von Integral- und Differentialgleichungen). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Eine Gleichung wird in der Mathematik Integralgleichung genannt, wenn darin die unbekannte Funktion in einem Integral vorkommt. Integralgleichungen können in Naturwissenschaft und Technik zur Beschreibung verschiedener Phänomene verwendet werden.

Definition

Eine lineare Integralgleichung ist eine Gleichung für eine unbekannte Funktion und hat für die Form

,

wobei , , gegebene Funktionen und kompakt sind. Die Funktion wird Kern genannt. Nichtlineare Gleichungen können noch komplizierter sein, z.B. kann im Kern vorkommen: .

Klassifizierung

Lineare Integralgleichungen kann man in

einteilen.

Diese Einteilung erscheint willkürlich, ist aber aufgrund der unterschiedlichen analytischen Eigenschaften der jeweiligen Arten von Integralgleichungen notwendig. So sind beispielsweise Integralgleichungen 2. Art (unter schwachen Voraussetzungen an den Kern) für fast alle Werte von eindeutig lösbar, und die Lösung hängt stetig von ab. Dies gilt für Integralgleichungen 1. Art (unter denselben Voraussetzungen an den Kern) im Allgemeinen nicht. Integralgleichungen 1. Art sind wie z.B. die Laplace-Transformation fast immer inkorrekt gestellte Probleme. Die Fourier-Transformation bildet eine der wenigen Ausnahmen.

Ist die in einer Integralgleichung vorkommende bekannte Funktion , so ist die Gleichung homogen, andernfalls inhomogen.

Außerdem kann man Integralgleichungen nach ihren Integrationsgrenzen klassifizieren. Sind alle Grenzen konstant, so spricht man von Fredholm-Integralgleichungen, ist eine der Grenzen variabel, so nennt man die Gleichung eine Volterra-Integralgleichung.

Eine weitere Einteilung beruht auf Eigenschaften des Kerns. Hier gibt es schwach singuläre und stark singuläre Integralgleichungen.

Kompakte Operatoren

Mit wird für einen hinreichend integrierbaren Kern ein linearer Operator definiert. Wesentlich für die Theorie der (nicht stark singulären) Integralgleichungen ist die Theorie der kompakten Operatoren. Diese Theorie ähnelt in gewisser Weise der von linearen Gleichungen im Endlichdimensionalen. Kompakte Operatoren haben nämlich im Wesentlichen pure Eigenwertspektren. Genauer heißt das: Das Spektrum besteht (evtl. von der Null abgesehen) nur aus Eigenwerten und diese häufen sich in höchstens einem Punkt, der Null. Alle Eigenräume (evtl. von dem der Null abgesehen) sind endlichdimensional.

Dualität von Integral- und Differentialgleichungen

Integraloperatoren treten oft (aber nicht ausschließlich) bei der Lösung von Differentialgleichungen auf, zum Beispiel bei Sturm-Liouville-Problemen, oder bei partiellen Differentialgleichungen in Form der Greenschen Funktion. Falls in der Gleichung zusätzlich noch eine Ableitung der Funktion vorkommt, spricht man von Integro-Differentialgleichungen. Ein Beispiel hierfür ist die aus der kinetischen Gastheorie stammende Boltzmann-Gleichung.

Siehe auch

Literatur