Supraleiter
Supraleiter sind Materialien, deren elektrischer Widerstand beim Unterschreiten einer kritischen Temperatur Tc sprunghaft auf einen unmessbar kleinen Wert fällt.


Supraleiter
Die Temperatur , unterhalb der die Supraleitung einsetzt, heißt Sprungtemperatur oder kritische Temperatur. Ihr Wert ist materialabhängig und kann durch (von außen anliegende) Magnetfelder gesenkt werden. Sie sinkt beim so genannten kritischen Magnetfeld bei Typ-I-Supraleitern bzw. bei Typ-II-Supraleitern bis auf nahezu Null Kelvin.
Es handelt sich beim Übergang zur Supraleitung im Nullfeld um einen kontinuierlichen Phasenübergang.
Mit der Supraleitung geht der Meißner-Ochsenfeld-Effekt einher, wonach Magnetfelder bis zu einer bestimmten Stärke aus dem Leiter verdrängt werden. Aufgrund des verschwindenden Widerstandes kann sich im Inneren eines Supraleiters bis zu einer kritischen Feldstärke kein Magnetfeld ausbilden. Ein von außen angelegtes Magnetfeld induziert einen Kreisstrom, der im Inneren des Supraleiters ein entgegengesetztes Feld aufbaut, welches das äußere kompensiert. Aufgrund des nicht vorhandenen elektrischen Widerstandes wird der Kreisstrom nicht mehr schwächer, das Magnetfeld bleibt erhalten. Durch den Effekt kann eine kleine supraleitende Probe im Magnetfeld zum Schweben gebracht werden.
Einteilung
Substanz | Sprungtemperatur in K |
Sprungtemperatur in °C |
---|---|---|
Wolfram [1] | 0,012 | −273,139 |
Gallium [1] | 1,091 | −272,059 |
Aluminium | 1,14 | −272,01 |
Quecksilber [1] | 4,153 | −268,997 |
Tantal [1] | 4,483 | −268,667 |
Blei [1] | 7,193 | −265,957 |
Niob [1] | 9,5 | −263,65 |
AuPb | 7,0 | −266,15 |
Technetium | 11,2 | −266,07 |
MoN | 12,0 | −261,15 |
PbMo6S8 | 15 | −258,15 |
K3C60 | 19 | −254,15 |
Nb3Ge | 23 | −250,15 |
La2CuO4 | 35 | −238,15 |
MgB2 | 39 | −234,15 |
Cs3C60 | 40 | −233,15 |
YBa2Cu3O7-x; x ~ 0,2 [2] | 93 | −180,15 |
HgBa2Ca2Cu3O8+x [2] | 133 | −140,15 |
Je nach ihrem Verhalten im Magnetfeld unterscheidet man Supraleiter vom Typ I und II, auch erster und zweiter Art genannt.
Supraleiter 1. Art
Magnetische Feldlinien werden in Supraleitern 1. Art bis auf eine dünne Schicht an der Oberfläche vollständig aus dem Inneren verdrängt. Das Magnetfeld nimmt an der Oberfläche des Supraleiters exponentiell ab; das charakteristische Maß der Oberflächenschicht ist die so genannte (Londonsche) Eindringtiefe. Man bezeichnet diesen Zustand auch als Meißner-Phase. Ein Supraleiter 1. Art wird normalleitend, wenn entweder das äußere Magnetfeld einen kritischen Wert oder die Stromdichte durch den Supraleiter einen kritischen Wert überschreitet. Die meisten metallischen Elemente zeigen dieses Verhalten und haben in der Regel eine sehr niedrige Sprungtemperatur im Bereich weniger Kelvin. (Ausnahmen sind die nicht supraleitenden Alkali- und Erdalkalimetalle sowie Kupfer, Silber und Gold.)
Bei Typ-I-Supraleitern wird die Supraleitung durch eine Paarbildung von Elektronen (Cooper-Paare) im Leiter erklärt. Bei der normalen elektrischen Leitung entsteht der elektrische Widerstand durch Wechselwirkungen der Elektronen mit Gitterfehlern des Kristallgitters und Gitterschwingungen. Darüber hinaus können auch Streuprozesse der Elektronen untereinander eine wichtige Rolle spielen. Durch die Kopplung der Elektronen im Supraleiter zu Cooper-Paaren wird die Energieabgabe an das Kristallgitter unterdrückt und so der widerstandslose elektrische Stromfluss ermöglicht. Die beiden einzelnen Elektronen sind Fermionen, die sich zu einem bosonischen Cooper-Paar zusammenschließen, und dabei einen makroskopischen Quantenzustand einnehmen (vgl. auch Suprafluidität).
Die vollständige Theorie zur Beschreibung der Typ-I-Supraleiter beruht auf quantenphysikalischen Effekten, die mit der BCS-Theorie im Rahmen der Vielteilchentheorie entwickelt wurden.
Supraleiter 2. Art
Supraleiter 2. Art befinden sich nur bis zu einem unteren kritischen Magnetfeld in der Meißner-Phase, verhalten sich also wie Typ I, darüber können magnetische Feldlinien in Form so genannter Flussschläuche in das Material eindringen (Shubnikov- oder Mischphase, auch Vortex- oder Flusschlauch-Zustand), ehe der supraleitende Zustand bei einem oberen kritischen Magnetfeld vollständig zerstört wird. Der magnetische Fluss in den Flussschläuchen beträgt immer ein ganzzahliges Vielfaches des magnetischen Flussquants:
Fließt ein Strom mit der Dichte J durch den Supraleiter, so übt er auf die Flussschläuche eine Lorentz-Kraft
- (l = Länge des Flussschlauchs)
senkrecht zu J und dem Magnetfeld B quer durch das Material. Dabei verschwinden die Schläuche an einem Rand und bilden sich am gegenüber liegenden Rand neu. Diese Feldbewegung verursacht wiederum eine Lorentz-Kraft , welche nach der Lenzschen Regel dem Strom entgegengerichtet ist. Diese Gegenkraft bewirkt einen Spannungsabfall, es entsteht also ein elektrischer Widerstand im Supraleiter.
Um das zu verhindern, können in das Kristallgitter gezielt Störstellen (Pinning-Zentren) eingebaut werden, welche die Flussschläuche bis zu einer bestimmten Grenzkraft festhalten. Erst wenn die Niob-Aluminium-Legierungen.
Eigenschaften
Supraleiter, mit geringfügigen Unterschieden zwischen 1. und 2. Art, besitzen neben dem praktischen Verlust des elektrischen Widerstandes und dem Verdrängen von Magnetfeldern aus ihrer Struktur noch einige andere Eigenschaften. Die meisten lassen sich mit der BCS-Theorie oder der für die Supraleitung benutzten Gibbs-Funktion der freien Enthalpie erklären. Die freie Enthalpie der jeweiligen Phase kann man über verschiedene Beobachtungsparameter (z. B. Druck, Temperatur, magnetischen Feld) berechnen. Die Gibbs-Funktion ist in diesem Fall durch ein Minimum festgelegt, d. h. die supraleitende Phase wird instabil im Vergleich zur normalleitenden Phase, wenn die freie Enthalpie der supraleitenden Phase größer ist als die der normalleitenden (und umgekehrt).
Ein so genanntes kritisches Magnetfeld , bei dem die Supraleitung zusammenbricht, kann als Funktion der Umgebungstemperatur T betrachtet werden. In der Nähe des absoluten Nullpunktes muss aufgewendet werden, um die supraleitende Phase zu zerstören. Beim Erreichen der Übergangtemperatur bricht die supraleitende Phase auch ohne ein äußeres Magnetfeld zusammen. Die Funktion des äußeren kritischen Magnetfeldes kann in guter Näherung durch
beschrieben werden. Die Erklärung für den Zusammenbruch der Supraleitung bei ausreichend hohen Magnetfeldern liegt in der Bindungsenergie der Cooper-Paare. Wenn den Cooper-Paaren eine Energie zugeführt wird, die größer ist als ihre Bindungsenergie, dann brechen sie auf – was den Übergang in die normalleitende Phase beschreibt. Die Umgebungstemperatur muss entsprechend niedriger sein, um diesen Vorgang mit der Kondensation von Cooper-Paaren zu kompensieren. Die kritische Energie kann nicht nur durch magnetische Felder erzeugt werden. Zur Umgebungstemperatur wurden auch Funktionen mit dem Druck (1.) und elektrischen Feldern (2.) gefunden. Da das Aufbrechen von Cooper-Paaren endotherm ist, kann man durch ein Magnetfeld und einen darin befindlichen Stoff im Supraleitenden Zustand die Umgebung des Supraleiters abkühlen. Als technische Anwendung ist dieser Kühlprozess per Entmagnetisierung jedoch uninteressant.
- Bei sehr hohem Druck sinkt im allgemeinen die kritische Umgebungstemperatur. Allerdings gibt es teilweise auch umgekehrte Abhängigkeiten. Diese Anomalie einiger Stoffe kommt durch eine strukturelle Umwandlung des Leiters durch den hohen Druck zustande. Die kritische Temperatur des Stoffes kann bei zunehmenden Druck zuerst sinken, dann kommt bei einem bestimmten Druck zur Bildung einer Modifikation, die plötzlich höhere Übergangstemperaturen aufweist. Zu diesen Hochdrucksupraleitern gehören auch Stoffe bei denen bisher nur bei hohem Druck ein Übergang in die supraleitende Phase beobachtet wurde.
- Legt man eine Spannung an einen Supraleiter an, so zerstört dieses elektrische Feld ab einer bestimmten Stärke die Supraleitung.
Das Volumen eines Stoffes in der normalleitenden Phase (bei Temperaturen ) ist kleiner als das Volumen in der supraleitenden Phase (). Ist so entsprechen sich beide Werte ungefähr (). Dies ist deshalb interessant, da während der Übergangsphase beide Phasen S und N nebeneinander im Leiter existieren. Um dieses Phänomen zu erklären, sind allerdings intensivere Überlegungen notwendig.
Die spezifische Wärmekapazität der Elektronen erhöht sich beim Übergang vom normal- in den supraleitenden Zustand bei für Typ-I/II-Supraleiter sprunghaft (Rutgers-Formel). In klassischen Supraleitern verringert sie sich im supraleitendem Zustand exponentiell mit der Temperatur, da Cooper-Paare keine Wärme aufnehmen können und so nur noch Elektronen zur Wärmekapazität beitragen, die über die Energielücke angeregt werden (siehe auch Boltzmann-Faktor). Die Wärmekapazität der Phononen (Gitterschwingungen) bleibt beim Übergang in den supraleitenden Zustand unverändert.
Der supraleitende Zustand hat wenig Einfluss auf die Wärmeleitfähigkeit. Man muss diesen Einfluss für zwei Arten von Stoffen betrachten. Zum einen Stoffe, bei denen Wärme vor allem über das Gitter weitergegeben wird, was einen Großteil von Leitern ausmacht. Diese Wärmeleitung wird in der Nähe von durch die starken Interferenzen an den Übergängen zwischen S- und N-leitenden Schichten behindert, bei jedoch durch die fehlende Wechselwirkung mit den Elektronen im Vergleich zur normalleitenden Phase besser. Bei Stoffen, in denen die Elektronen einen großen Anteil an der Wärmeleitung haben, wird diese logischerweise schlechter. Es wurde in dieser Beziehung darüber nachgedacht, Supraleiter als über ein kritisches Feld steuerbare Schalter für Wärmeströme einzusetzen.
Hochtemperatursupraleitung
Substanz | Sprungtemperatur in K |
---|---|
La1.85Ba0.15CuO4 | 35 |
YBa2Cu3O7 [2] | 93 |
Bi2Sr2Ca2Cu3O10 | 110 |
HgBa2Ca2Cu3O8 [2] | 133 |
Hg0.8Tl0.2Ba2Ca2Cu3O8 (Momentaner Rekordhalter) |
138 |
Hauptartikel: Hochtemperatursupraleitung
Die Hochtemperatursupraleitung (HTSL) wurde erst 1986 entdeckt. So wird eine Klasse von keramischen Supraleitern (Kuprate) mit besonders hohen Sprungtemperaturen genannt, für die ihre Entdecker Bednorz und Müller 1987 mit dem Nobelpreis für Physik ausgezeichnet wurden.
Besonders technisch interessant sind HTSL, die eine Sprungtemperatur von über 77 Kelvin (Siedetemperatur von Stickstoff) erreichen und damit eine kostengünstige Kühlung ermöglichen. Der bekannteste Vertreter ist das Yttriumbariumkupferoxid mit der Formel YBa2Cu3O7-δ, das auch als YBaCuO, YBCO oder 123 bezeichnet wird. Supraleitfähigkeit wird für δ = 0,05 bis 0,65 beobachtet.
Als HTSL werden solche mit einer Sprungtemperatur > 23 K bezeichnet. Dies ist die höchste Sprungemperatur der konventionellen metallischen (Legierungs-)Supraleiter.
Theorie
Die Londonschen Gleichungen
Ohne auf die Träger des Suprastromes einzugehen, leiteten Fritz und Heinz London 1935 eine phänomenologische Beschreibung der Supraleitung her. Die London-Gleichungen beschreiben den widerstandslosen Transport und den Meißner-Ochsenfeld-Effekt. Eine ausführliche Beschreibung gibt der Artikel über die London Gleichung.
BCS-Theorie
Eine mikroskopsche Beschreibung der Supraleitung wurde 1957 von Bardeen, Schrieffer und Cooper vorgestellt. Mit der so genannten BCS-Theorie lassen sich konventionelle Supraleiter sehr gut beschreiben. Details sind im dortigen Aritkel nachzulesen.
Anwendungen
Erzeugung starker Magnetfelder
Ein bedeutendes Anwendungsfeld ist die Erzeugung starker konstanter oder nur langsam variierender Magnetfelder. Der ohmsche Widerstand der Spulenwicklungen konventioneller Elektromagnete erzeugt große Wärmemengen und damit einen großen Energieverlust.
Für diese Anwendung werden nur klassische Supraleiter (SL) verwendet, im Wesentlichen Legierungen von Niob. Diese erreichen höhere magnetische Feldstärken. Für Hochtemperatur-Supraleiter (HTSL) fehlen z. Z. noch die geforderten Fertigungstechniken. Die Herstellung starker, supraleitender Spulen erfordert das Ziehen von kilometerlangen, nur wenige Mikrometer dünnen Leiterfäden. Klassische SL bestehen aus Metalllegierungen, mit denen dies möglich ist. HTSL haben jedoch physikalische Eigenschaften, welche denen von Keramiken sehr ähnlich sind. Daher kann man bisher noch nicht die gewünschten Fäden herstellen.
Die Supraleitung ermöglicht es, die von einem hohen Strom durchflossenen Feldspulen in sich zu schließen, woraufhin der Strom im Prinzip unendlich lange verlustfrei in der Spule erhalten bleiben kann. Zum Laden der in sich geschlossenen Spule wird ein kurzes Teilstück der Spule über die Sprungtemperatur geheizt. Dadurch wird die Spule geöffnet und kann über Zuleitungen geladen werden. Wenn die gewünschte Stromstärke erreicht ist, wird der Heizer abgeschaltet. Die Spule ist dadurch wieder in sich geschlossen. Bei dauerhaftem Betrieb können die elektrischen Anschlüsse nach dem Laden der Spulen mechanisch entfernt und der Behälter der Spule verschlossen werden. Zur Erhaltung des Feldes ist dann nur ein regelmäßiges Nachfüllen der Kühlmedien Helium und Stickstoff erforderlich. Ein gutes Beispiel hierfür bietet ein NMR-Gerät.
Die größte Störung ist das so genannte Quenchen (engl. to quench = abschrecken). Dabei bricht lokal die Supraleitung zusammen. Da diese Stelle nun normalleitend ist, wirkt sie als elektrischer Widerstand. Sie heizt sich sehr schnell auf, wodurch sich der Widerstand erhöht und der normalleitende Bereich weiter vergrößert. So wird innerhalb kurzer Zeit die Spule entladen. Da die im Magnetfeld gespeicherte Energie recht groß ist, kann dieser Vorgang bei fehlenden Sicherheitsschaltungen zur Zerstörung der Spule führen. Supraleiter sind ideal diamagnetisch. Daher kann ein Strom nur an seiner Oberfläche fließen. Um also große Stromstärken ohne Überschreiten der Grenzstromdichte zu erreichen, muss man viele sehr dünne SL-Fäden parallel schalten. Durch Einbetten dieser Fäden in Kupfer wird erreicht, dass beim Quenchen der Strom vom normalleitenden Kupfer aufgenommen wird. Damit wird eine Zerstörung des Leiters wirksam vermieden.
In folgenden Aggregaten werden solche Spulen verwendet:
- Kernfusionsreaktoren
- Kernspintomographen
- Teilchenbeschleuniger
- Elektromotoren
- Supraleitender Magnetischer Energiespeicher
Mikrowellen in supraleitenden Kavitäten
Für Teilchenbeschleuniger gibt es hochfrequente Felder zur Beschleunigung der Teilchen. Auch hierfür werden Supraleiter verwendet, obwohl die kritische Feldstärke mit der Frequenz deutlich absinkt. Ab einer kritischen Frequenz werden die Cooper-Paare direkt durch Photonenabsorption aufgebrochen. Dann sinkt die kritische Feldstärke auf Null. Die einzige Möglichkeit diese Grenze weiter zu verschieben ist eine tiefere Kühlung.
Zum Beispiel werden in dem TESLA-Projekt supraleitende Kavitäten aus reinem Niob entwickelt. Vorteil und Nachteil des Systems ist die geringe Dämpfung. So ist der Wirkungsgrad besonders hoch, gleichzeitig werden aber parasitäre Moden nicht bedämpft.
Energietransport und Umwandlung
Bei Supraleitern zweiter Art zum Transport höherer elektrischer Ströme besteht die Schwierigkeit, dass diese Materialien beim Übergang in den Normalzustand nicht wie die Metalle zu normalen, guten elektrischen Leitern werden, sondern – in guter Näherung – zu Isolatoren. Wenn ein solcher stromführender Supraleiter in den Normalzustand wechselt (zum Beispiel durch Überschreiten der maximalen Stromdichte), so wird der durch die Leitungsinduktivität kurz weiterfließende Strom das Material nach dem Jouleschen Gesetz erhitzen, was bis zur vollständigen Zerstörung des Supraleiters führen kann. Daher ist es notwendig, solche Materialien, beispielsweise als mikroskopisch dünne Fäden, in einen normalen Leiter einzubetten. Die Schwierigkeit, aus diesen keramikartigen Materialien dünne Fäden zu ziehen, ist eines der Haupthindernisse für den Einsatz bei höheren Stromstärken.
Es ist jedoch denkbar, dass Hochtemperatursupraleiter als Kurzschlussstrombegrenzer in Energieverteilungsnetzen eingesetzt werden. Dabei bewirkt eine erhöhte Stromdichte im Kurzschlussfall, dass der Supraleiter zuerst in den Mischbereich und anschließend in den normalleitenden Bereich übergeht. Der Vorteil gegenüber Kurzschlussstrombegrenzungsdrosseln ist, dass ein Spannungsabfall während des Normalbetriebes nur stark vermindert auftritt. Ferner kann als Vorteil gegenüber Sicherungen und KS-Begrenzern mit Sprengkapseln festgehalten werden, dass der supraleitende Zustand ohne Austausch von Betriebsmitteln wieder erreicht wird und ein Normalbetrieb kurze Zeit nach dem Fehlerfall wieder möglich ist.
Da unter Verwendung hoher Spannungen auch auf klassischen Leitungen elektrische Energie effizient übertragen werden kann, sind Supraleiter hier kaum konkurrenzfähig. Durch die im Vergleich zu konventionellen Leitungen höhere erzielbare Stromdichte lässt sich jedoch mehr elektrische Leistung auf gleichem Raum übertragen. Daher werden supraleitende Kabel dort eingesetzt, wo durch Erhöhung des Bedarfs bei begrenztem baulichen Raum Erweiterungen vorgenommen werden müssen. In Tokio werden derzeit normale Stromkabel gegen HTSL-Kabel mit Stickstoffkühlung ausgetauscht.
Es lassen sich verlustarme Transformatoren herstellen, die bei gleicher Leistung deutlich verminderte Abmessungen und Masse haben und somit beispielsweise im mobilen Betrieb (Lokomotiven) Vorteile erbringen. Darüber hinaus kann auf eine umweltgefährdende Ölkühlung verzichtet werden. Durch eine gute thermische Isolierung ist es möglich, die Transformatoren mit Kältemaschinen zu betreiben.
Annähernd verlustfreie Elektromotoren mit Hochtemperatursupraleitern ermöglichen ebenfalls eine Steigerung des Wirkungsgrades und eine deutliche Volumen- und Gewichtsersparnis gegenüber klassischen Motoren.
Mechanische Lager auf Basis der Supraleitung
Unter der Verwendung von supraleitenden Lagern lassen sich Energiespeicher für die kurzfristige Speicherung elektrischer Energie konstruieren. Diese Speicher dienen insbesondere der Kompensation schneller Lastschwankungen der Verbundnetze. Mit Hilfe der Lager werden Schwungräder reibungsfrei gelagert, die die Energie speichern.
Magnetischer Energiespeicher auf Basis der Supraleitung
In SMES (Supraleitender Magnetischer Energie Speicher) wird mit supraleitenden Spulen Energie gespeichert. Die Energie ist sehr schnell abrufbar und wird daher für die Kompensation schneller Lastschwankungen in Stromnetzen (Flickerkompensator) oder als Pulsgenerator für kurze, intensive Pulse eingesetzt.
Messtechnik
Der Josephson-Effekt sowie SQUIDs erlauben die Messung kleinster Magnetfelder.
Geschichte
Bevor Experimente bei Temperaturen nahe dem absoluten Nullpunkt durchgeführt werden konnten, gab es verschiedene Theorien, wie sich der elektrische Widerstand in diesem Temperaturbereich verhalten würde, so z. B. dass der Widerstand stark ansteigen würde oder dass er ein bestimmtes Niveau nicht unterschreiten würde.
Der Effekt der Supraleitung wurde erstmals 1911 vom Niederländer Heike Kamerlingh Onnes entdeckt. Er beobachtete, dass Quecksilber unterhalb von 4,19 Kelvin sprungartig seinen elektrischen Widerstand verlor. Obwohl die Quantenmechanik damals noch neu war, postulierte er bereits, dass die Supraleitfähigkeit nur quantenmechanisch erklärt werden könne.
Die erste phänomenologische Deutung der Supraleitung kam von den deutschen Physikern Fritz London und Heinz London in den 1930er Jahren.
Im Jahr 1950 entstand die erfolgreiche phänomenologische Ginsburg-Landau-Theorie. Eine quantenmechanische Theorie der Supraleitung wurde erst im Jahre 1957 von den US-amerikanischen Physikern John Bardeen, Leon N. Cooper und John R. Schrieffer (BCS-Theorie) gegeben, wofür ihnen 1972 der Nobelpreis für Physik verliehen wurde.
Im Jahre 1986 publizierten der deutsche Physiker Johannes Georg Bednorz und der Schweizer Karl Alex Müller (beide waren am IBM-Forschungszentrum bei Zürich beschäftigt) ihre Entdeckung der Hochtemperatursupraleitung, wofür sie bereits 1987 den Nobelpreis erhielten. Eine Theorie über das Zustandekommen dieser Art Supraleitung steht noch aus.
Die russischen Physiker Witali Ginsburg und Alexei Alexejewitsch Abrikossow erhielten 2003 den Nobelpreis für ihre Forschungen über die verschiedenen Typen von Supraleitern (Supraleiter 1. und 2. Art).
Im August 2005 wurde der weltweit erste Generator mit Hochtemperatur-Supraleiter (HTS) im Systemprüfhaus für Großantriebe der Siemens AG in Nürnberg erfolgreich in Betrieb gesetzt. Der Generator leistet rund 4000 kVA bei 3600 U/min.
Siehe auch
- Elektrischer Leiter
- Supraleitendes Magnetlager
- Tieftemperaturphysik
- Das Kryotron ist ein Schaltelement für supraleitende Geräte
Medien
Einzelnachweise
- ↑ a b c d e f Kittel, Charles: Introduction to Solid State Physics. 7. Aufl. New York: Wiley, 1996
- ↑ a b c d F. Schwaigerer, B. Sailer, J. Glaser, H. J. Meyer: Strom eiskalt serviert: Supraleitfähigkeit. In Chemie in unserer Zeit. 2002, 36, S. 108–124 [1]
Literatur
- Werner Buckel, Reinhold Kleiner: Supraleitung – Grundlagen und Anwendungen. 6. Auflage. Wiley-VCH, Februar 2004, ISBN 978-3-527-40348-6.
- J. R. Schrieffer, M. Tinkham: Superconductivity. In: Reviews of modern physics. Nr. 71, 1999, 313–317, ISSN 0034-6861.
Weblinks
Deutsch
- Eiskalter Draht (Technology Review-Artikel, vom 31. März 2006)
- Was kann die Supraleitung im Energiebereich leisten?
- Supraleiter und Supraflüssigkeiten bei Welt der Physik
- Weniger Verlust ist ein Gewinn (Supraleitung) (Multimedia-Show im Shockwave-Format)
- Warum schaukelt sich der schwebende Magnet bis zu einer kontinuierlichen Drehbewegung auf?
- technorama.ch: Supraleitung (hochwertige populärwissenschaftliche Erläuterung der Supraleiter-Effekte)
- Welt der Physik: Herausforderung Supraleitung. ([2] [abgerufen am 10. Februar 2008]).
- MIT-Forschung erklärt Phasenübergang neu
Englisch
- superconductors.org Superconductor Links (umfangreiche Link-Liste)
Videos
[3] aus der Fernseh-Sendereihe alpha-Centauri (ca. 15 Minuten). Erstmals ausgestrahlt am .