Zum Inhalt springen

Dialogische Logik

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 26. Januar 2005 um 09:20 Uhr durch Pacogo7 (Diskussion | Beiträge) (kleine Änderungen und Beispieldialog). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Die Dialogische Logik ist eine von den deutschen Logikern und Philosophen Kuno Lorenz und Paul Lorenzen entwickelte Logikform.

Die Angriffs- und Verteidigungsregeln für die logischen Junktoren und Quantoren werden (statt mit der Wahrheitstafelmethode) als Spielregeln eines Dialogspiels konzipiert. Die Regeln im Sequenzenkalkül (Gerhard Gentzen) werden dazu upside-down geschrieben, so dass die Behauptung des Proponenten (derjenige, der mit einer Behauptung beginnt) oben (links) steht.

Der Proponent hat gewonnen, wenn er eine angegriffene Primaussage (oder "Atomaussage", also eine Aussage, die soweit entwickelt ist, dass sie keine logischen Zeichen mehr enthält) verteidigt hat oder wenn der Opponent eine angegriffene Primaussage nicht verteidigt (vgl. Lorenzen 2000 Seite 65).

"Immerwahr" ist eine aus logischen Zeichen zusammengesetzte komplexe Aussage, wenn sie sich im Dialog immer (gegen jeden Opponenten) gewinnen läßt. Formal wahr (logisch wahr) wird eine (immerwahre) Aussage genannt, wenn sie (immer) gewonnen werden kann, ohne in einen Dialog über die Atomformeln (=Primaussagen) einzutreten.

Das gelingt dadurch, dass man Aussagen (oder Formeln wie man auch sagen kann) des Gegners übernimmt. Wie das geht wird unten an a -> a erläutert.


Hier sind die Angriffs- und Verteidigungsregeln der Dialogischen Logik aufgelistet:

     Junktoren         Angriff    Verteidigung
      A  B              L?           A       (und)
      A  B              R?           B       (und)
      A  B              ?          A / B     (oder)
       ¬ A                 A?          ...     (nicht)
      A  -> B              A?           B      (wenn - dann)      

(der letztgenannte Junktor wenn-dann wird hier Subjunktor, Subjunktion, sonst allgemein Implikation genannt. Implikation ist in der D.L. ein Meta-Terminus der bei logischen Folgerungen, also zB bei einer logisch gültigen Subjunktion verwendet wird)

    Quantoren          Angriff    Verteidigung
      x A(x)           n?            A(n)
      x A(x)           ?             A(n)         

Paul Lorenzen führte übrigens diese Quantorzeichen (Einsquantor: "für ein") bzw. (Allquantor: "für alle") ein, um die Verbindung zu den entsprechenden Junktoren zu erläutern und die Interpretation zu erleichtern, damit nicht immer der Fehler gemacht wird, aus der Formulierung der Quantoren auf die "Existenz" von etwas zu "schließen".

entspricht: entspricht:

Hier als sehr einfaches Beispiel ein Dialog um a -> a Die Aussage ist formal logisch wahr (es sei denn man ist zufällig experimenteller Quantenlogiker).

    P    |    O
 ---------------------------------------
 a -> a  |
 ---------------------------------------
         |
         | a?   (die vornestehende Primaussage wird angegriffen)
         |
    a    |      (als Verteidigung wird die nachstehende Pa genannt, dies ist
         |       gleichzeitig auch eine Übernahme des a der vorigen Zeile)

P hat den Dialog gewonnen, a -> a ist wahr.

Interessant sind die speziellen Effekte, die bei der intuitionistischen (Intuitionismus) Interpretation des Subjunktors ( -> ) auftreten: Während des Dialogs sind auch nicht wahrheitsdefinite (eine Aussage ist entweder wahr oder falsch) Aussagen erlaubt. Es wird eine Logik möglich, die den Satz vom ausgeschlossenen Dritten nicht dogmatisch voraussetzt. Carl Friedrich von Weizsäcker hat einige dieser Gedanken Lorenzens für die Interpretation der Quantenphysik durch zeitliche Logik aufgenommen. (Quantenlogik: Während wir überlegen, ob der Mond untergeht oder nicht, geht er unter)

In der D.L. läßt sich beides tun: Intuitionistische, effektive Logik und klassische zweiwertige Logik (klassische Logik) lassen sich durch Zusatz oder Wegnahme von Stützregeln ineinander überführen.

Kleine Bücherliste

  • Kamlah, W; Lorenzen, P: Logische Propädeutik. Vorschule des vernünftigen Redens (Mannheim 1967, später teilweise revidiert und mehrfach wieder herausgegeben.) Mannheim/Wien/Zürich 1990 ISBN 3-411-05227-9
  • Lorenz, K; Lorenzen, P: Dialogische Logik, Darmstadt 1978
  • Lorenzen, P: Lehrbuch der konstruktiven Wissenschaftstheorie, Stuttgart 2000 ISBN 3-476-01784-2
  • Inhetveen, R: Logik. Eine dialog-orientierte Einführung, Leipzig 2003 ISBN 3-937219-02-1