Zum Inhalt springen

Studentsche t-Verteilung

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 20. Januar 2008 um 22:24 Uhr durch PixelBot (Diskussion | Beiträge) (Bot: Ergänze: ar:توزيع ستيودنت الاحتمالي). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Dichten von t-verteilten Zufallsgrößen

Die Studentsche t-Verteilung ist eine Wahrscheinlichkeitsverteilung, die 1908 von William Sealey Gosset entwickelt wurde.

Er hatte festgestellt, dass der standardisierte Mittelwert normalverteilter Daten nicht mehr normalverteilt ist, wenn die Varianz des Merkmals unbekannt ist und mit der Stichprobenvarianz geschätzt werden muss. Hypothesentests, bei denen die t-Verteilung verwendung finden, bezeichnet man als t-Tests.

Die Herleitung wurde erstmals 1908 veröffentlicht, während Gosset in einer Guinness-Brauerei arbeitete. Da sein Arbeitgeber die Veröffentlichung nicht gestattete, veröffentlichte Gosset sie unter dem Pseudonym Student. Der t-Faktor und die zugehörige Theorie wurden erst durch die Arbeiten von R. A. Fisher belegt, der die Verteilung Student's distribution (Students Verteilung) nannte.

Definition

Eine stetige Zufallsvariable genügt der Student t-Verteilung mit Freiheitsgraden, wenn sie die Wahrscheinlichkeitsdichte

für

mit der Gamma-Funktion

besitzt.

Eigenschaften

Wendepunkte

Die Dichte der Students-t-Verteilung besitzt Wendepunkte bei

.

Median

Der Median liegt bei

.

Modus

Der Modus ergibt sich zu

.

Erwartungswert

Für den Erwartungswert erhält man für

.

Varianz

Die Varianz ergibt sich für zu

.

Schiefe

Die Schiefe ist für

.

Wölbung

Für die Exzess-Wölbung erhält man für

.

Nichtzentrale t-Verteilung

Ist der Zähler der t-verteilten Zufallsvariablen normalverteilt mit einem Erwartungswert , handelt es sich um eine so genannte nichtzentrale t-Verteilung mit dem Nichtzentralitätsparameter . Diese Verteilung wird vor allem zur Bestimmung des β-Fehlers bei Hypothesentests mit t-verteilter Prüfgröße verwendet.

Beziehung zu anderen Verteilungen

Beziehung zur Cauchy-Verteilung

Für und mit ergibt sich die Cauchy-Verteilung als Spezialfall aus der Students-t-Verteilung.

Beziehung zur -Verteilung und Standardnormalverteilung

Die t-Verteilung beschreibt die Verteilung eines Ausdruckes

wobei eine standardnormalverteilte und eine χ²-verteilte Zufallsvariable mit Freiheitsgraden bedeutet. Die Zählervariable muss unabhängig von der Nennervariable sein. Die Dichtefunktion der t-Verteilung ist dann symmetrisch bezüglich ihres Erwartungswertes 0. Die Werte der Verteilungsfunktion können nicht analytisch berechnet werden und liegen in der Regel tabelliert vor.

Näherung durch die Normalverteilung

Wenn die unabhängigen Zufallsvariablen identisch normalverteilt sind mit den Parametern und , dann unterliegt die stetige Zufallsgröße

einer Students t-Verteilung mit Freiheitsgraden.

Die Student-t-Verteilung wird verwendet zur Konfidenzschätzung für den Erwartungswert einer normalverteilten Zufallsvariablen bei unbekannter Varianz. Beispielsweise ist die Prüfgröße für den statistischen Test des Erwartungswertes einer normalverteilten Zufallsvariablen mit unbekannter Varianz

t-verteilt mit Freiheitsgraden. ist der Schätzer für die Standardabweichung und ist der Stichprobenmittelwert.

Ausgewählte Quantile der t-Verteilung

einseitiger Test:

v Wahrscheinlichkeit
0,75 0,875 0,90 0,95 0,975 0,99 0,995 0,999
1 1,000 2,414 3,078 6,314 12,706 31,821 63,657 318,309
2 0,817 1,604 1,886 2,920 4,303 6,965 9,925 22,327
3 0,765 1,423 1,638 2,353 3,182 4,541 5,841 10,215
4 0,741 1,344 1,533 2,132 2,776 3,747 4,604 7,173
5 0,727 1,301 1,476 2,015 2,571 3,365 4,032 5,893
6 0,718 1,273 1,440 1,943 2,447 3,143 3,707 5,208
7 0,711 1,254 1,415 1,895 2,365 2,998 3,499 4,785
8 0,706 1,240 1,397 1,860 2,306 2,896 3,355 4,501
9 0,703 1,230 1,383 1,833 2,262 2,821 3,250 4,297
10 0,700 1,221 1,372 1,812 2,228 2,764 3,169 4,144
11 0,697 1,214 1,363 1,796 2,201 2,718 3,106 4,025
12 0,695 1,209 1,356 1,782 2,179 2,681 3,055 3,930
13 0,694 1,204 1,350 1,771 2,160 2,650 3,012 3,852
14 0,692 1,200 1,345 1,761 2,145 2,624 2,977 3,787
15 0,691 1,197 1,341 1,753 2,131 2,602 2,947 3,733
16 0,690 1,194 1,337 1,746 2,120 2,583 2,921 3,686
17 0,689 1,191 1,333 1,740 2,110 2,567 2,898 3,646
18 0,688 1,189 1,330 1,734 2,101 2,552 2,878 3,611
19 0,688 1,187 1,328 1,729 2,093 2,539 2,861 3,579
20 0,687 1,185 1,325 1,725 2,086 2,528 2,845 3,552
21 0,686 1,183 1,323 1,721 2,080 2,518 2,831 3,527
22 0,686 1,182 1,321 1,717 2,074 2,508 2,819 3,505
23 0,685 1,180 1,319 1,714 2,069 2,500 2,807 3,485
24 0,685 1,179 1,318 1,711 2,064 2,492 2,797 3,467
25 0,684 1,178 1,316 1,708 2,060 2,485 2,787 3,450
26 0,684 1,177 1,315 1,706 2,056 2,479 2,779 3,435
27 0,684 1,176 1,314 1,703 2,052 2,473 2,771 3,421
28 0,683 1,175 1,313 1,701 2,048 2,467 2,763 3,408
29 0,683 1,174 1,311 1,699 2,045 2,462 2,756 3,396
30 0,683 1,173 1,310 1,697 2,042 2,457 2,750 3,385
40 0,681 1,167 1,303 1,684 2,021 2,423 2,704 3,307
50 0,679 1,164 1,299 1,676 2,009 2,403 2,678 3,261
60 0,679 1,162 1,296 1,671 2,000 2,390 2,660 3,232
70 0,678 1,160 1,294 1,667 1,994 2,381 2,648 3,211
80 0,678 1,159 1,292 1,664 1,990 2,374 2,639 3,195
90 0,677 1,158 1,291 1,662 1,987 2,368 2,632 3,183
100 0,677 1,157 1,290 1,660 1,984 2,364 2,626 3,174
200 0,676 1,154 1,286 1,653 1,972 2,345 2,601 3,131
300 0,675 1,153 1,284 1,650 1,968 2,339 2,592 3,118
400 0,675 1,152 1,284 1,649 1,966 2,336 2,588 3,111
500 0,675 1,152 1,283 1,648 1,965 2,334 2,586 3,107
0,674 1,150 1,282 1,645 1,960 2,326 2,576 3,090

Ein Webrechner für exakte Werte kann unter [1] auf den Seiten der Uni Saarland gefunden werden.