Geologie
Die Geologie (von gr.: γη, ge „Erde“ und λογος, logos „Lehre“) ist die Wissenschaft vom Aufbau, von der Zusammensetzung und Struktur der Erde, ihren physikalischen Eigenschaften und ihrer Entwicklungsgeschichte, sowie der Prozesse, die sie formten und auch heute noch formen. Abweichend von der eigentlichen Bedeutung verwendet man das Wort auch für geologischer Aufbau, z. B. Die Geologie der Alpen.
Übersicht
Die Bezeichnung Geologie im heutigen Sinn findet man zuerst 1778 bei Jean-André Deluc (1727–1817). Horace-Bénédict de Saussure (1740–1799) führte Geologie im Jahr 1779 als feststehenden Begriff ein. Davor war der Begriff Geognosie gebräuchlich.

Das Material, mit dem sich Geologen hauptsächlich beschäftigen, sind Gesteine. Im Gelände, oder unter Tage, gliedert der Geologe die aufgeschlossenen (offen zugänglichen) Gesteine, anhand von äußeren Merkmalen, in definierte Einheiten. Diese Kartiereinheiten müssen sich bei dem gewählten Maßstab auf einer geologischen Karte, oder in einem geologischen Profil, darstellen lassen. Durch Extrapolation kann er so vorhersagen, wie die Gesteine im Untergrund gelagert sind.
Die genauere Untersuchung der Gesteine (Petrographie, Petrologie) findet aber meist im Labor statt.
- Mit den einzelnen, z. T. mikroskopisch kleinen, Bestandteilen der Gesteine, den Mineralen, befasst sich die Mineralogie.
- Mit dem Fossilinhalt sedimentärer Gesteine beschäftigt sich die Paläontologie.
Solche detaillierten Untersuchungen auf kleinem Maßstab liefern die Daten und Fakten für die großräumigen Untersuchungen der Allgemeinen Geologie.
Die Geologie hat vielfältige Berührungspunkte mit anderen Naturwissenschaften, die als Geowissenschaften zusammengefasst werden. So betrachtet die Geochemie chemische Prozesse im System Erde - und nutzt Methoden aus der Chemie, um zusätzliche Informationen über geowissenschatfliche Fragestellungen zu erhalten. Ähnliches gilt für die Geophysik und Geodäsie. Selbst die Mathematik hat einen speziellen Zweig, die Geostatistik, hervorgebracht, der besonders im Bergbau Verwendung findet. Seit den 1970er Jahren besteht in den Geowissenschaften allgemein ein gewisser Trend von eher qualitativ beschreibenden Untersuchungen hin zu mehr quantitativ messenden Methoden. Trotz der erhöten Rechenleistung moderner Computer stoßen solche numerischen Methoden, wegen der enormen Variabilität geowissenschaftlicher Parameter, immer noch an ihre Grenzen.
Im Grenzgebiet zur Astronomie bewegt sich die Planetengeologie, die sich seit Beginn der Erforschung unseres Sonnensystems mit Sonden und Satelliten mit fremden Himmelskörpern zu beschäftigen beginnt.
Geschichte der Geologie
Hauptartikel: Geschichte der Geologie
Bereits in der Antike verfügten die Menschen schon seit langem über praktische Kenntnisse für die Suche nach mineralischen Rohstoffen, deren Abbau und Verwertung. Die ersten Versuche einer theoretischen Behandlung geologischer Fragestellungen, wie die Ursache von Erdbeben, oder die Herkunft von Fossilien, finden sich jedoch erst in der ionischen Naturphilosophie im 5. Jh. v.C.. Bis in die frühe Neuzeit hinein blieb die Lehre des Empedokles von den vier Elementen und die Lehre des Aristoteles von der Transmutation der Elemente auch richtungsweisend für die Vorstellungen über die Natur von Metallen, Mineralen und Gesteinen.
Während des Niedergangs des Römischen Reiches in der Spätantike wurden diese Ansichten nur im östlichen, griechisch geprägten Teil überliefert, wo sie im frühen Mittelalter von arabischen Gelehrten, wie Ibn Sina, wieder aufgenommen wurden. In Westeuropa hingegen gingen selbst viele praktische Kenntnisse im Bergbau wieder verloren. Erst im 12. und 13. Jahrhundert begannen sich abendländische Alchemisten wieder mit der Bildung von Metallen und Gesteinen im Inneren der Erde zu befassen. Im Laufe der Renaissance wurden solche Spekulatioen nicht nur von humanistischen Gelehrten, wie Paracelsus, ausgebaut, sondern auch um umfangreiche empirische Daten und praktische Methoden ergänzt, besonders von Georg Agricola. Aus solchen Ansätzen entwickelte sich bis ins 17. Jahrhundert eine Art "Proto-Geologie", die viele Gemeinsamkeiten mit der "Proto-Chemie" des Ökonomen, Alchemisten und Bergbauingenieurs Johann Joachim Bechers hatte.
Allgemeine Geologie
Die Allgemeine Geologie befasst sich mit den Kräften, die auf den Erdkörper einwirken und mit den Prozessen die in großem Maßstab zur Gesteinsbildung beitragen.
Jedes Gestein kann anhand seiner spezifischen Ausbildung (Gefüge, Struktur) einer der drei großen Gesteinsfamilien zugeordnet werden: Sedimentite, Magmatite und Metamorphite. Jedes Gestein kann durch geologische Vorgänge in ein Gestein der jeweils anderen beiden Familien umgewandelt werden, (siehe dazu: Kreislauf der Gesteine). Die Prozesse, die an der Erdoberfläche wirken, werden als exogen, die im Erdinneren als endogen bezeichnet.
Exogene Dynamik
Die exogene Dynamik führt zur Bildung von Sedimentgesteinen. Dies geschieht durch
- physikalische Erosion anderer Gesteine durch Wind, Wasser oder Eis, und Massenbewegungen großer Gesteinsmengen, wie Bergstürze,
- chemische Verwitterung,
- physikalische Ablagerung des zerkleinerten Materials (Detritus), z. B. in Schutthalden, als Schotter, Sand, Ton, etc., und der folgenden Verfestigung der Lockergesteine zu Festgesteinen (Diagenese)
- chemische Ausfällung von Evaporiten (wie z. B. anorganische Kalke, Gips, Salz) und
- biogene Bildung von Sedimenten (wie die meisten Kalksteine oder Diatomit).
Ein eigenes, komplexes Gebiet exogener Prozesse behandelt die Bodenkunde. Die Quartärgeologie befasst sich mit den Ablagerungen der letzten Eiszeit, die einen großen Teil der heutigen Landschaftsformen auf der nördlichen Hemisphäre prägen.
Endogene Dynamik
Die endogene Dynamik führt zur Bildung von Metamorphiten und Magmatiten. Sie beginnt mit der
- Erhöhung des Drucks, unter der andauernden Ablagerung von weiteren Sedimenten auf die unterlagernden Schichten. Durch Entwässerung, Kompaktion und Verfestigung (Diagenese) wird aus den Lockersedimenten festes Gestein, wie z.B. Sandstein.
- Die Verformung von Gesteinen und die Rekristallisierung von Mineralen unter zunehmend höheren Temperaturen und Drücken wird als Metamorphose bezeichnet. Dabei bleibt das Gestein aber zunächst noch in festem Zustand. Aus magmatischen Gesteinen und grobkörnigen Sedimenten entstehen dabei oft Gneise, aus feinen Sedimenten Schiefer.
- Schließlich kann es aber doch zur Aufschmelzung der Gesteine kommen (Anatexis). Glutflüssige Magmen steigen dann wieder aus dem Erdmantel auf.
- Wenn die Magmen in der Erdkruste stecken bleiben und erkalten, bilden sich Plutonite, z. B. aus Granit, wenn sie die Erdoberfläche erreichen, kommt es zur Bildung von Vulkaniten wie Lava oder vulkanische Asche.
Die Bewegungen, die die Oberflächengesteine in die Tiefe verfrachten, verformen und falten, aber gleichzeitig die Tiefengesteine wieder an die Oberfläche bringen, sowie die Spuren, die diese Kräfte in den Gesteinen hinterlassen, wie Faltung, Scherung und Schieferung, werden von der Tektonik und der Strukturgeologie untersucht.
Siehe auch: Plattentektonik, Gebirgsbildung
Historische Geologie
Die historische Geologie erforscht die Geschichte der Erde von ihrer Entstehung bis zur Gegenwart im Allgemeinen, und die Entwicklungsgeschichte (Evolution) der Lebewesen im Besonderen. Als Informationsquellen dient die Ausbildung der Gesteine (Lithofazies) und die in ihnen eingeschlossenen Fossilien (Biofazies). Die Gliederung der Erdgeschichte in einer geologischen Zeitskala erfolgt durch stratigraphische und geochronologische Methoden.
Stratigraphie
Die Grundlage der Stratigraphie bildet ein einfaches Prinzip: die Lagerungsregel. Eine Schicht im Hangenden ('oben') wurde später abgelagert als die Schicht im Liegenden ('unten'). Allerdings sollte beachtet werden, dass ursprünglich horizontal abgelagerte Schichten durch spätere tektonische Bewegungen verstellt oder sogar überkippt sein können. In diesem Fall ist man auf die Existenz von eindeutigen Oben-Unten-Kriterien angewiesen, um die ursprüngliche Lagerung zu bestimmen. Weiterhin gilt, dass Schichten, die solche verstellten Gesteine mit einer Diskordanz überlagern, das heißt schiefwinklig zur Schichtung, ebenfalls jünger sind als letztere. Dasselbe gilt aber auch für magmatische Gänge und Intrusionen aus der Tiefe, die die Schichten von unten durchschlagen.

Bei der Erstellung eines stratigraphischen Profils werden besonders Erkenntnisse der Paläontologie angewandt. Wenn die Reste eines bestimmten Lebewesens nur in ganz bestimmten Schichten auftreten, gleichzeitig aber eine weite, überregionale Verbreitung haben, und möglichst unabhängig von örtlichen Variationen der Ablagerungsbedingungen (Fazies) sind, dann spricht man von einem Leitfossil. Alle Schichten, in denen sich diese Leitfossilien finden, haben somit das selbe Alter. Nur wenn keine Fossilien vorhanden sind, muss man Zuflucht zur Lithostratigraphie nehmen. Dann kann die Zeitgleichheit bestimmter Schichten nur bei seitlicher Verzahnung nachgewiesen werden.
Um tektonische Abläufe zu rekonstruieren, untersucht der Geologe den Versatz und die Verformung der Gesteine durch Klüftung, Schieferung, Störung und Faltung. Auch hier sind diejenigen Strukturen die jüngsten, die die anderen durchschlagen, aber selbst nicht versetzt sind. Die Kunst ist hier "Verwickeltes einfach, Ruhendes bewegt zu sehen." (Hans Cloos)
Geochronologie
Äonothem | Ärathem | System | Alter (mya) | |
---|---|---|---|---|
P h a n e r o z o i k u m Dauer: 541 Ma |
Känozoikum Erdneuzeit Dauer: 66 Ma |
Quartär | 0 ⬍ 2,588 | |
Neogen | 2,588 ⬍ 23,03 | |||
Paläogen | 23,03 ⬍ 66 | |||
Mesozoikum Erdmittelalter Dauer: 186,2 Ma |
Kreide | 66 ⬍ 145 | ||
Jura | 145 ⬍ 201,3 | |||
Trias | 201,3 ⬍ 251,9 | |||
Paläozoikum Erdaltertum Dauer: 288,8 Ma |
Perm | 251,9 ⬍ 298,9 | ||
Karbon | 298,9 ⬍ 358,9 | |||
Devon | 358,9 ⬍ 419,2 | |||
Silur | 419,2 ⬍ 443,4 | |||
Ordovizium | 443,4 ⬍ 485,4 | |||
Kambrium | 485,4 ⬍ 541 | |||
P r ä k a m b r i u m Dauer: 4059 Ma |
P r o t e r o z o i k u m Dauer: 1959 Ma |
Neoproterozoikum Jungproterozoikum Dauer: 459 Ma |
Ediacarium | 541 ⬍ 635 |
Cryogenium | 635 ⬍ 720 | |||
Tonium | 720 ⬍ 1000 | |||
Mesoproterozoikum Mittelproterozoikum Dauer: 600 Ma |
Stenium | 1000 ⬍ 1200 | ||
Ectasium | 1200 ⬍ 1400 | |||
Calymmium | 1400 ⬍ 1600 | |||
Paläoproterozoikum Altproterozoikum Dauer: 900 Ma |
Statherium | 1600 ⬍ 1800 | ||
Orosirium | 1800 ⬍ 2050 | |||
Rhyacium | 2050 ⬍ 2300 | |||
Siderium | 2300 ⬍ 2500 | |||
A r c h a i k u m Dauer: 1500 Ma |
Neoarchaikum Dauer: 300 Ma |
2500 ⬍ 2800 | ||
Mesoarchaikum Dauer: 400 Ma |
2800 ⬍ 3200 | |||
Paläoarchaikum Dauer: 400 Ma |
3200 ⬍ 3600 | |||
Eoarchaikum Dauer: 400 Ma |
3600 ⬍ 4000 | |||
H a d a i k u m Dauer: 600 Ma |
4000 ⬍ 4600 |
Ein prinzipielles Problem ist hierbei die Tatsache, dass man mit obigen Methoden nur eine relative Zeitskala, ein Vorher-Nachher der verschiedenen Gesteinsbildungen, aber keine absoluten Datierungen erhält. Zwar hatte man schon früh versucht die Sedimentationsraten bestimmter Gesteine zu schätzen, aber die meiste Zeit "steckt" ja nicht in den Schichten selbst, die sich in relativ kurzer Zeit gebildet haben können, sondern v.a. in den Lücken zwischen den Schichten und in den Diskordanzen zwischen verschiedenen Schichtpaketen. Deshalb reichte die absolute Zeitskala, die mit Hilfe von Jahresringen in Bäumen (Dendrochronologie, oder durch Auszählung der Warven-Schichtung in Ablagerungen der letzten Eiszeit gewonnen wurde, nur wenige tausend Jahre zurück.
Erst mit der Entdeckung der natürlichen Radioaktivität fanden sich zuverlässige Methoden für die absolute Datierung, auch von ältesten Gesteinen. Diese basieren auf den bekannten Zerfallsraten von radioaktiven Isotopen innerhalb der Minerale und Gesteine, zuweilen kombiniert mit paläomagnetischen Messungen.
Siehe auch: Datierung, Kosmologie, Entstehung der Erde, Rubidium-Strontium-Methode, Kalium-Argon-Methode, Radiokarbon-Methode, so wie die detailliertere Paläo/Geologische Zeitskala.
Aktualismus
Um aus der heutigen Situation Rückschlüsse auf die Vergangenheit ziehen zu können, bedienen sich die Geologen des Prinzips des Aktualismus. Dieses lässt sich in einem Satz zusammenfassen: Der Schlüssel zur Vergangenheit ist die Gegenwart. Findet ein Geologe z. B. alte Gesteine, die fast identisch mit ausgeflossenen Laven eines heute aktiven Vulkans sind, dann kann er davon ausgehen, dass es sich bei dem gefundenen Gestein ebenfalls um vulkanisches Material handelt. Allerdings lässt sich der Aktualismus nicht auf alle Gesteine anwenden. Z. B. lässt sich die Bildung von Eisenerzlagerstätten (BIF—„Banded Iron Formations“) heute nicht mehr beobachten, da sich die chemischen Bedingungen auf der Erde derart geändert haben, dass die Entstehung solcher Gesteine nicht mehr stattfindet. Andere Gesteine bilden sich eventuell in solchen Tiefen, dass ihre Bildung außerhalb des Zugriffs des Menschen liegt. Um die Entstehung solcher Gesteine zu verstehen, greifen die Geowissenschaftler auf Laborexperimente zurück.
Angewandte Geologie
Die Angewandte Geologie beschäftigt sich mit der praktischen Nutzbarmachung geologischer Forschung in der Gegenwart. Der Nutzen besteht nicht nur in der effizienten Ausbeutung der natürlichen Ressourcen der Erde, sondern auch in der Vermeidung von Umweltschäden und der Frühwarnung vor Naturkatastrophen, wie Erdbeben, Vulkanausbrüchen und Tsunamis. Sie gliedert sich in eine Vielzahl unterschiedlichster Felder, die sich sowohl unter einander als auch mit anderen Wissenschaften verzahnen. Siehe: Geowissenschaften
Einige wichtige Teilgebiete der angewandten Geologie sind beispielsweise:
- die Hydrogeologie, die sich mit dem Fließverhalten und der Qualität des (Grund-)Wassers beschäftigt und unter anderem bei der Trinkwassergewinnung und dem Hochwasserschutz von Bedeutung ist;
- die Ingenieurgeologie, die sich beispielsweise der Statik des Bodens beim Bau von Gebäuden widmet;
- die Lagerstättenkunde oder Montangeologie, die sich als ältester Forschungsbereich der Geologie mit der Erforschung von natürlichen Bodenschätzen (Kohle, Erdöl, Erdgas, Erze, etc.) befasst;
- die Bodenkunde, die sich mit der Qualität, Zusammensetzung und Horizontalabfolge von Böden beschäftigt;
- die Umweltgeologie.
Es besteht eine enge Verzahnung angewandter geologischer Gebiete mit anderen Disziplinen, wie z. B. Bauingenieurwesen, Bergbau- und Hüttenwesen, Materialkunde oder Umweltschutz.
Liste bedeutender Geologen

- Georgius Agricola (1494 - 1555)
- Friedrich August von Alberti (1795 - 1878)
- Leopold von Buch (1774 - 1853)
- Johann Georg von Charpentier (1786 - 1855)
- Hans Cloos (1885 - 1951)
- Alcide Dessalines d'Orbigny (1802 - 1857)
- James Dwight Dana (1813 - 1895)
- Ludwig Meyn (1820-1878)
- Bartholomäus Eberl (1883-1960)
- Rudolf Falb (1838-1903)
- Karl von Fritsch (1838 - 1906)
- Gerard Freiherr von de Geer (1858 - 1943)
- William F. Haxby (1949 - 2006)
- James Hutton (1726 - 1797)
- Charles Lyell (1797 - 1875)
- Albrecht Penck (1858 - 1945)
- Friedrich August von Quenstedt (1809 - 1889)
- Karl von Raumer (1783 - 1865)
- William Smith (1769 - 1839)
- Gustav Steinmann (1856–1929)
- Nicolaus Steno (1638 - 1686)
- Hans Stille (1876 - 1951)
- Eduard Suess (1831 - 1914)
- Otto Martin Torell (1828 - 1900)
- Alfred Wegener (1880 - 1930)
- Abraham Gottlob Werner (1749 - 1817)
- Alexander von Humboldt (1769 - 1859)
Siehe auch
- Liste geologischer Begriffe
- Wollaston-Medaille
- Geological Society of London
- Geologische Vereinigung
- EUGEN
- Geologische Bundesanstalt
- Geologie Österreichs
- Bundesanstalt für Geowissenschaften und Rohstoffe
Literatur
- Frank Press und Raymond Siever (3. Aufl. 2003): Allgemeine Geologie, Spektrum Akademischer Verlag, ISBN 3-8274-0307-3 (Originalausgabe: Understanding Earth, W.H.Freeman & Co. New York)
- Heinrich Bahlburg, Christoph Breitkreuz: Grundlagen der Geologie., 2. Aufl. 2003. Spektrum Akademischer Verlag, Heidelberg, ISBN 3-8274-1394-X
- Georg Agricola: Vom Berg- und Hüttenwesen, Dünndruckausgabe im dtv, ISBN 3-423-06086-7.
- Helmut Hölder (1989): Kurze Geschichte der Geologie und Paläontologie, Springer-Verlag, ISBN 3-540-50659-4
- Hans Murawski und Wilhelm Meyer (11. Aufl. 2004): Geologisches Wörterbuch, Spektrum Akademischer Verlag, Heidelberg, ISBN 3-8274-1445-8
- Peter Faupl: Historische Geologie. UTB für Wissenschaft, 2. Aufl. (2003), ISBN 3-8252-2149-0.
- Steven M. Stanley: Historische Geologie. Eine Einführung in die Geschichte der Erde und des Lebens. Spektrum Lehrbuch, 2. Aufl. (2001), ISBN 3-8274-0569-6.
- Alan Cutler: Die Muschel auf dem Berg, Knaus, ISBN 3813501884
- Dierk Henningsen und Gerhard Katzung: Einführung in die Geologie Deutschlands, 6. Auflage 2002, Spektrum Verlag, ISBN 3-8274-1360-5