Zum Inhalt springen

Laser

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 16. Mai 2007 um 08:59 Uhr durch Cliffhanger (Diskussion | Beiträge) (Materialbearbeitung: Tippfehler). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Laser [ˈleɪzɚ] ist das Initialwort von Light Amplification by Stimulated Emission of Radiation (Lichtverstärkung durch Induzierte Emission).

Demonstrationslaser: In der Mitte ist das Leuchten der Gasentladung zu sehen, die das Lasermedium anregt. Der Laserstrahl selbst ist rechts als roter Punkt auf dem weißen Schirm zu erkennen.

Der Begriff wurde 1957 von Gordon Gould geprägt.

Laser sind Strahlungsquellen, (Infrarot, sichtbares Licht, Ultraviolett), deren Gemeinsamkeit im Entstehungsprozess der Strahlung liegt, nämlich in der sogenannten induzierten Emission. So gibt es eine Vielzahl unterschiedlicher Lasermodelle mit den verschiedensten Eigenschaften. Ein Laser besteht dabei immer aus einem optisch aktiven Medium, in dem die Strahlung erzeugt wird, und meistens einem Resonator, der für die Eigenschaften des Laserstrahls, wie Parallelität oder Strahlprofil, mitverantwortlich ist.

Laser haben faszinierende Eigenschaften, die sie stark von klassischen Lichtquellen (wie z. B. einer Glühlampe) unterscheiden. Aufgrund ihrer hohen Kohärenz kann mittels Lasern die Wellennatur des Lichts direkt beobachtet werden (z. B. durch Interferenzeffekte). Laserlicht kann zeitlich kohärent sein. Dadurch ist es einfarbig (monochromatisch). Wegen der hohen räumlichen Kohärenz kann Laserstrahlung hoch intensiv und gut gebündelt (fokussiert) werden, was sie für Anwendungen als Schneid- und Schweißwerkzeug oder auch als Laserskalpell in der Medizin geeignet macht.

Laser können auch so konstruiert werden, dass sie Impulse mit extrem geringer Dauer (~10-fs-Bereich) aussenden, so dass die zeitaufgelöste Laserspektroskopie ein Standardverfahren zur Untersuchung schneller Prozesse geworden ist.

Geschichte

Albert Einstein beschrieb bereits 1917 die stimulierte Emission als Umkehrung der Absorption. Danach wurde lange gerätselt, ob der Effekt zur Verstärkung des Lichtfeldes benutzt werden könnte, da zum Erreichen der Verstärkung eine Besetzungsinversion eintreten musste. Diese ist aber in einem stabilen Zweiniveausystem unmöglich. Zunächst wurde ein Dreiniveausystem in Betracht gezogen, und Rechnungen ergaben eine Stabilität für Strahlung im Mikrowellenbereich. Daraus folgte der Maser, der Mikrowellenstrahlung aussendet. Der erste Laser - ein Rubin-Festkörperlaser - wurde 1960 von Theodore Maiman gebaut und am 26. Mai fertiggestellt[1].

Die weitere Entwicklung führte dann zunächst zu Gaslasern (Stickstoff-, CO2-Laser, He-Ne-Laser[2]) und danach zu Farbstofflasern (das laseraktive Medium ist flüssig). Eine Weiterentwicklung von Kristalltechnologien ermöglichte eine sehr starke Erweiterung des spektralen Nutzbereiches. Durchstimmbare Laser zum Anfahren einer bestimmten Wellenlänge und breitbandige Laser wie z. B. der Titan-Saphir-Laser läuteten in den 80er Jahren die Ära der Ultrakurzpulslaser mit Impulsdauern von Pico- und Femtosekunden ein.

In den späten 80ern ermöglichte die Halbleitertechnologie immer langlebigere, hocheffektive Halbleiter-Laserdioden, die mit kleiner Leistung in CD- und DVD-Laufwerken oder in Glasfaser-Datennetzen eingesetzt werden und inzwischen nach und nach als Pumpquellen mit Leistungen bis in den kW-Bereich die wenig effektive Lampenanregung von Festkörperlasern ersetzen.

In den 90er Jahren wurden neue Pumpgeometrien für hohe Laserleistungen verwirklicht, wie der Scheiben- und der Faserlaser. Letztere fanden zur Jahrtausendwende aufgrund der Verfügbarkeit von neuen Fertigungstechniken und Leistungen bis 20 kW zunehmend Anwendungen bei der Materialbearbeitung, wo sie die bisher gebräuchlichen Typen (CO2-Laser, lampengepumpte Nd:YAG-Laser) teilweise ersetzen können.

Zu Beginn des 21. Jahrhunderts wurden erstmals nichtlineare Effekte ausgenutzt, um Attosekundenpulse im Röntgenbereich zu erzeugen. Damit ließen sich zeitliche Abläufe im Inneren eines Atoms verfolgen.

Erste blaue und ultraviolette Laserdioden erreichten die Marktreife.

Inzwischen ist der Laser zu einem bedeutenden Instrument der Industrie, Kommunikation, Wissenschaft und Unterhaltungselektronik geworden.

Physikalische Grundlagen

Spontane Emission

Datei:Lasing.png
Stimulierte Emission: Lasing

Befindet sich ein Atom oder Molekül in einem energetisch angeregten Zustand, so gibt es mehrere Möglichkeiten, diese in ihm gespeicherte Energie wieder abzugeben. Eine davon ist die spontane Emission von Strahlung: Ein Elektron oder ein Molekül-Schwingungszustand wechselt in einen energetisch günstigeren Zustand und strahlt ein Photon (Lichtquant) entsprechender Energie bzw. Wellenlänge ab. Wesentlich für die spontane Emission ist, dass das Abstrahlen zufällig geschieht (spontan [lateinisch], von selbst erfolgend). Die Abstrahlung ist zufällig, falls sie nicht von außen induziert/stimuliert wird.

Stimulierte Emission

Bei herkömmlichen Lichtquellen erfolgt der Übergang von einem Energieniveau zum anderen durch spontane Emission, das heißt, sowohl der Zeitpunkt als auch die Richtung, in die das Photon ausgesendet wird, sind zufällig. Beim Laser hingegen erfolgt dieser Übergang durch stimulierte Emission: Ein Lichtteilchen stimuliert diesen Übergang, und dadurch entsteht ein zweites Lichtteilchen, dessen Eigenschaften (Frequenz, Phase, Polarisation und Ausbreitungsrichtung) mit dem des ersten identisch sind. Das Resultat ist eine Lichtverstärkung. Der entgegengesetzte Vorgang ist die Absorption, bei der durch die Energie eines Photons ein Elektron in ein höheres Energieniveau gehoben wird.

Besetzungsinversion

Die Wahrscheinlichkeit, dass ein Photon durch Absorption ein Elektron auf ein höheres Niveau anhebt, ist in einem Zwei-Niveau-System genauso hoch wie die Wahrscheinlichkeit, dass es eine stimulierte Emission auslöst. Um eine Verstärkung von Licht zu erreichen, müssen daher mehr Zustände im höheren Niveau vorliegen als im niedrigen, so dass aufgrund der Besetzung die Wahrscheinlichkeit für die stimulierte Emission höher ist als für die Absorption. Diesen Zustand nennt man Besetzungsinversion. Aus diesem Grund ist eine Realisierung eines Lasers mittels Zwei-Niveau-Systemen nicht möglich. Vielmehr werden Laser mittels Drei- oder Mehr-Niveau-Systemen konstruiert. Im Drei-Niveau-System wird ein Elektron aus dem Grundzustand in einen hochliegenden atomaren oder molekularen Zustand angeregt. Dieser angeregte Zustand zerfällt schnell in das obere Niveau des Laserübergangs, der metastabil (d.h. langsam zerfallend) ist. Durch diesen Effekt werden die Atome/Moleküle des Lasermediums in den oberen Zustand des Laserüberganges gepumpt; eine Besetzungsinversion ist die Folge.

Technische Umsetzung

Hauptbestandteile:
1. aktives Medium
2. Pumpenergie
3. Spiegel
4. teildurchlässiger Spiegel
5. Laserstrahl

In einem Laser wird das Licht durch eine geeignete Anordnung zweier Spiegel immer wieder durch das Gebiet, in dem Besetzungsinversion herrscht (das sog. aktive Medium, z. B. ein Nd:YAG-Kristall oder eine Kohlendioxid-Gasentladung), geleitet. Eine solche Anordnung nennt man optischen Resonator (lat. resonare = zurücksingen, hallen). Im Resonator wird das Licht beim Hin- und Herlaufen zwischen den beiden Spiegeln immer weiter verstärkt, bis der Leistungszuwachs innerhalb des Systems durch die Abnahme der Besetzungsinversion und die immer stärker ansteigenden Verluste ausgeglichen wird. Einer der beiden Spiegel ist teilweise (typisch: Promille bis über 15 %, je nach Verstärkung) durchlässig, um Licht aus dem Laser auskoppeln zu können. Die Feldstärke innerhalb des Resonators ist dadurch viel höher als im ausgekoppelten Strahl.

Lasermedien mit sehr hoher Verstärkung können auch mit nur einem Spiegel oder ganz ohne Spiegel lasern (sogenannte Superstrahler, z. B. beim Stickstofflaser).

Ausgangsleistungen von typischen Lasersystemen reichen von wenigen Mikrowatt (µW) bei Diodenlasern bis zu einigen Terawatt (TW) bei gepulsten Femto- oder Attosekunden-Lasern mit externer Verstärkung.

Die Energie, die benötigt wird, um die Atome oder Moleküle in die angeregten Zustände zu versetzen, muss dem System von außen zugeführt werden. Dieser Prozess wird als Pumpen bezeichnet. Es kann elektrisch in Form einer Gasentladung, durch Injektion von Ladungsträgern (Stromfluss) beim Halbleiterlaser oder optisch durch das Licht einer Gasentladungslampe (Blitzlampe oder Bogenlampe) oder eines anderen Lasers stattfinden.

Auch eine chemische Reaktion kann zum Pumpen dienen. Beim Freie-Elektronen-Laser stammt die Pumpenergie aus dem Elektronenstrahl.

Eigenschaften von Laserstrahlung

Strahleigenschaften

Die Strahleigenschaften eines Laserstrahles werden wesentlich durch die Art des Laser-Resonators bestimmt: die Laseremission wird durch diesen nur in einer Richtung ermöglicht, die durch die Spiegelanordnung und die Geometrie des Aktiven Mediums bestimmt ist. Da Laser dadurch nahezu parallel in eine Richtung verlaufende Strahlung aussenden, kann durch Bündelung (Fokussierung) eine sehr viel höhere Leistungsdichte erreicht werden als bei gewöhnlichen Lichtquellen (z. B. Bogenlampen). Das Verhalten von Laserstrahlen kann oft gut durch Gaußstrahlen beschrieben werden.

Kohärenz

Bei einer normalen Glühlampe werden Lichtwellen nicht nur mit unterschiedlicher Wellenlänge ausgesendet, sondern auch zeitlich leicht versetzt, also phasenverschoben. Bei einem Laser dagegen "springen" die Wellen jeweils fast gleichzeitig ab. Die Wellen sind also über mehr oder weniger lange Strecken fast phasengleich, was man sich auch in der Holografie zunutze macht. Man sagt diese Wellen haben eine große Kohärenzlänge.

Polarisation

Die Polarisation von Laserstrahlen ist aufgrund polarisierender optischer Bauteile im Resonator (schräge Umlenkspiegel und Flächen (Brewster-Fenster), geringe Höhe des Resonators bei Halbleiterlasern) meistens linear.

Oft ist das erwünscht, um polarisationsabhängige Kopplung und Strahlteilung durchführen zu können.

Beim Schneiden von Metallen tritt jedoch insbesondere bei der linear polarisierten CO2-Laserstrahlung im Schnittspalt eine polarisationsabhängige Absorption auf, was eine schlechte und richtungsabhängige Schnittkantenqualität zur Folge hat. Daher wird beim Metallschneiden mit zirkularer Polarisation gearbeitet, die durch phasendrehende Spiegel im Strahlengang des Laserstrahles erzielt wird.

Frequenz, Wellenlänge

Die Frequenz von Laserstrahlung wird durch das aktive Medium bestimmt. Es gibt Stoffe, die auf vielen Wellenlängen zum Lasen angeregt werden können - jedoch meistens bei einer besonders gut. Daher sind Laser sehr schmalbandige Strahlungsquellen. Extreme Schmalbandigkeit ist z. B. bei der interferometrischen Längenmessung mittels Lasern von Bedeutung. Bei extremer Breitbandigkeit spricht man von Superkontinuum-Lasern, welche z.B. in der optische Kohärenztomographie und zur Erzeugung von Frequenzkämmen eingesetzt werden.

Dauerstrich- und gepulste Laser

Laserlicht von Dauerstrich-Lasern (englisch: continuous-wave laser, cw-laser) ist im Idealfall schmalbandig (monochrom, einfarbig), das heißt, es besteht nur aus Licht einer Wellenlänge. Insbesondere ist Dauerstrich-Laserlicht aus stabilen Laserresonatoren aufgrund des Vielfachumlaufes zeitlich beziehungsweise longitudinal (entlang seiner Ausbreitungsrichtung) kohärent, was bedeutet, dass die ausgesandten Wellenzüge nicht nur mit der gleichen Frequenz schwingen, sondern auch in der Phase über eine lange Strecke (die Kohärenzlänge) konstant sind. Dadurch zeigt ein solches Licht besonders ausgeprägte Interferenzerscheinungen. Während des Einschwingvorgangs des Dauerstrich-Lasers tritt zunächst oft Spiking, das heißt eine unregelmäßige Laserimpulsabgabe, auf. Dieses Verhalten nutzt ein modengekoppelter Laser gezielt aus, indem er die Spikes z. B. triggert oder synchronisiert.

Im Gegensatz zum Dauerstrich-Laser erzeugt ein gepulster Laser pulsierende Strahlung. Dazu benötigt er prinzipiell eine größere Frequenzbandbreite bei der die beteiligten Frequenzen gekoppelt sind (Modenkopplung). Je kürzer die Impulsdauer, desto breiter ist entsprechend den Gesetzen der Fouriertransformation das erzeugte Spektrum. Die geringsten erzielbaren Impulsdauern liegen heutzutage in der Größenordnung von Femto- und Attosekunden (siehe auch: Femtosekundenlaser). Bei derart kurzen Impulsen (Länge des Strahlungspaketes <30 µm, also ein Bruchteil einer Haarbreite) spielt bereits die ausreichende Breitbandigkeit des verstärkenden Lasermediums eine Rolle. Die Wiederholfrequenz, mit der die Impulse im Laser erzeugt werden, hängt u.a. bei der instantanen Kerr-Linsen-Modenkopplung (engl. "Kerr lens mode locking", ein Verfahren zur Erzeugung stabiler Pulse, also einer Folge von Impulsen geringer Dauer) von der Resonatorlänge ab: Bei einem Resonator mit einer Länge von einem halben Meter beträgt diese etwa 300 MHz - die Periodendauer entspricht einem Hin- und Herlaufen (Umlauf) des Impulses im Resonator. Die Spitzenleistung wird bei jedem Umlauf größer, die Impulsdauer bleibt von allein sehr gering. Aus solchen Pulslasern werden dann einzelne Impulse mittels optischer Schalter herausgelassen und weiterverstärkt. Mit einigen weiteren Tricks gelingt es damit, Spitzenleistungen bis in den Petawatt-Bereich zu erzeugen, die nur noch im Vakuum übertragen und fokussiert werden können.

Die Gütemodulation (Q-switching) des Resonators mit akustooptischen Güteschaltern oder Pockelszellen sind weitere Techniken zur Erzeugung energiereicher Laserimpulse mit geringer Dauer.

Mit Lasern gelingt es, Licht in hohem Grade zu kontrollieren bzw. zu manipulieren (Intensität, Richtung, Frequenz, Polarisation, Phase, Zeit).

Lasertypen

Laser werden meistens nach dem eingesetzten optisch aktiven Material kategorisiert und benannt.

Gaslaser

Bei Gaslasern ist das aktive Medium gasförmig. Zumeist werden Gaslaser elektrisch durch eine Gasentladung im aktiven Medium selbst gepumpt.

Beispiele:

Helium-Neon-Laser
  • Helium-Neon-Laser (HeNe-Laser): Wichtigste Emissionswellenlänge bei 632,8 nm (rot).
  • Kohlendioxidlaser (CO2-Laser): etwa 10,6 μm Wellenlänge (mittleres Infrarot), wichtiger Industrielaser
  • Kohlenmonoxidlaser (CO-Laser): etwa 6-8 μm Wellenlänge (mittleres Infrarot), funktioniert nur gekühlt
  • Stickstofflaser (N2-Laser): 337,1 nm (ultraviolett)
  • Argon-Ionen-Laser, mehrere Linien bei 457,9 nm (8 %), 476,5 nm (12 %), 488,0 nm (20 %), 496,5 nm (12 %), 501,7 nm (5 %), 514,5 nm (43 %) (blau bis grün)
  • Helium-Cadmium-Laser (HeCd-Laser): wichtigste Laserquelle für blau (442nm) und nahes UV (325nm)
  • Krypton-Ionen-Laser, mehrere Linien bei 350,7 nm; 356,4 nm; 476,2 nm; 482,5 nm; 520,6 nm; 530,9 nm; 586,2 nm; 647,1 nm (stärkste Linie); 676,4 nm; 752,5 nm; 799,3 nm (blau bis tiefrot)
  • Sauerstoff-Ionen-Laser
  • Xenon-Ionen-Laser
  • Mischgas-Laser, enthalten keine reinen Gase, sondern eine Mischung verschiedener (meistens Argon und Krypton)
  • Excimerlaser, z. B. KrF (248 nm), XeF (351-353 nm), ArF (193 nm), XeCl (308 nm), F2 (157 nm) (alles ultraviolett)
  • Metalldampflaser, z. B. Kupferdampflaser, bei 510,6 und 578,2 nm. Aufgrund der hohen Verstärkung kann ein Kupferdampflaser auch ohne Resonatorspiegel betrieben werden.
  • Metallhalogenid-Laser, z. B. Kupferbromid-Laser, bei 510,6 und 578,2 nm. Aufgrund der hohen Verstärkung kann ein Kupferbromidlaser auch ohne Resonatorspiegel betrieben werden.

Eine Sonderform sind die chemisch gepumpten Laser. Hier erfolgt das Pumpen durch eine chemische Reaktion im bzw. des aktiven Mediums. Das Gas ist nach der Reaktion verbraucht und kann dementsprechend nur einmal verwendet werden. Chemische Laser sind für transportable Hochleistungsanwendungen geeignet, sie haben fast ausschließlich im militärischen Bereich Bedeutung.

Beispiele:

  • HCl-Laser
  • Iod-Laser

Farbstofflaser

Bei diesem Lasertyp ist ein organischer Farbstoff in alkoholischer Lösung (oft Methanol oder Ethanol) das aktive Medium. Die Farbstofflösung wird dabei ständig umgepumpt, um ein Ausbleichen (photochemische Degeneration) zu vermeiden.

Beispiele für Farbstoffe:

  • Stilbene - Klasse von Farbstoffen im blauen Spektralbereich
  • Cumarine - Klasse von Farbstoffen im blauen bis grün-gelben Spektralbereich
  • Rhodamine - Klasse von Farbstoffen im gelben bis orange-roten Spektralbereich
  • DCM - Roter Farbstoff
  • LDS - Klasse von Farbstoffen im IR-Bereich

Farbstofflaser werden im allgemeinen durch andere Laser gepumpt. Dabei nimmt man einen Leistungsverlust durch den geringen Wirkungsgrad des Farbstofflasers in Kauf, um andere Wellenlängen zu erzeugen. Gepumpt werden kann sowohl kontinuierlich (kurz cw für engl. continuous wave) als auch gepulst.

Festkörperlaser

Der Festkörperlaser war der erste Lasertyp; Maiman entwickelte im Jahre 1960 den Rubinlaser.

Bei Festkörperlasern wird ein Trägerwerkstoff bzw. Wirtskristall mit Ionen eines fremden Stoffes dotiert. Diese Ionen bilden, eingebettet im Wirtsmaterial, das eigentliche aktive Medium. Die Laserübergänge der Ionen sind innerhalb des d-Orbitals. Diese Orbitale sind nicht an chemischen Bindungen beteiligt. Das Trägermaterial (Wirts-Kristall, Glas) nimmt daher nur geringen Einfluss auf die Eigenschaften der Ionen.

Festkörperlaser werden nach der Art und Form des Wirtsmaterials und den Dotierungselementen unterschieden:

Beispiele für Wirts- bzw. Trägermaterialien:

  • Glas (Stabform oder Faserlaser)
    • Vorteil: einfache Herstellung auch in großen Dimensionen
    • Nachteil: geringe Wärmeleitfähigkeit, geringe Festigkeit
  • Al2O3 (Korund, Saphir) (z. B. Rubin (Chrom-Dotierung), Titan:Saphir-Laser)
    • Vorteil: hohe Wärmeleitfähigkeit, hohe Festigkeit
    • Nachteil: relativ hohe Absorption, teuer
  • YAG (Yttrium-Aluminium-Granat-Laser, siehe Nd:YAG-Laser) Dotierung Nd, Er, Yb
    • Vorteil: hohe Wärmeleitfähigkeit, hohe Festigkeit, geringe Absorption
    • Nachteil: teuer
  • Yttrium-Vanadat (YVO4), Dotierung Nd
  • YLF

Beispiele für Dotierungsmaterialien:

  • Chrom war das Dotierungsmaterial des ersten Lasers, des Rubinlaser (694,3 nm (rot)). Aufgrund der geringen Effizienz wird es heute kaum noch verwendet.
  • Neodym, 1064 nm, Der wichtigste kommerzielle Festkörperlaser: Nd:YAG-Laser, bei 1064 nm (infrarot), beziehungsweise frequenzverdoppelt bei 532 nm (grün). Auch möglich sind: Nd:Glas, Nd:YLF. ..
  • Ytterbium, 1030 nm, erlaubt im Laserbetrieb einen hohen Wirkungsgrad > 50 %. Es bedarf dazu allerdings eines schmalbandigen Pumpens mit Laserdioden (940nm). Das wichtigste Material mit dieser Dotierung ist der Yb:YAG-Laser, z. B. hochdotiert als Scheibenlaser mit einer Wellenlänge von 1030 nm.
  • Titan Ein wichtiger modengekoppelter Festkörperlaser: Titan:Saphir-Laser, 670-1100 nm (rot-infrarot), aufgrund breitbandiger Verstärkung für Pulse im fs-Bereich geeignet
  • Erbium Wellenlänge 3 µm, Pumpen mit Diodenlasern bei 980 nm, sogenannter augensicherer Laser, Verwendung für Laser-Entfernungsmesser und in der Medizin

Formen des aktiven Mediums:

Farbzentrenlaser

Wie bei dem Festkörperlaser handelt es sich bei dem Farbzentrenlaser um einen Laser, bei dem Defekte (Fremdionen, Gitterfehler, Ladungen) in einen Trägerkristall eingebettet sind. Die Laserübergänge bei dem Farbzentrenlaser werden aber durch die Wechselwirkung der Störstellen mit dem Gitter erzeugt.

Beispiele:

Farbzentrenlaser erzeugen nur geringe Leistungen von typ. unter 100 mW.

Halbleiterlaser

Beim Halbleiterlaser werden stromdurchflossene pn-Übergänge im Halbleiter zur Besetzungsinversion verwendet.

Laserdioden sind direkt elektrisch gepumpte Laser. Die Leistung von Laserdioden mit guter Strahlqualität (M²<1,5) beträgt weniger als ein Watt. Multimode-Dioden erreichen bei schlechterer Strahlqualität (1,5<M²<100) Leistungen bis 10 W.

Mehrere Einzeldioden können in einem schmalen Chip (ca. 0,1 × 1 × 10 mm) nebeneinander integriert sein. Diese sogenannten Barren (engl. bar) liefern, auf eine Wärmesenke montiert, bis über 50 Watt (Barren mit über hundert Watt kontinuierlicher Ausgangsleistung sind in der Erprobung, Stand Januar 2007). Die Einzeldioden sind dabei elektrisch parallel geschaltet. Den montierten Barren nennt man auch „submount“.

Durch Kopplung vieler, in einem sogenannten stack (Stapel) untergebrachter Barren bzw. submounts werden Leistungen im kW-Bereich bei entsprechend schlechter Strahlqualität erreicht (M²>100).

Bis zu 6 Stapel kann man durch verschiedene Wellenlängen (üblich bis 3) und Polarisationsrichtungen verlustarm ohne Verschlechterung der Strahlqualität optisch addieren. Damit erreicht man Leistungen im zweistelligen kW-Bereich.

Zum optischen Pumpen von Festkörper-Lasern durch Laserdioden muss die Pumpwellenlänge exakt getroffen werden, daher ist hierbei keine Wellenlängenkopplung möglich. Die Diodenlaser müssen jedoch hierzu ohnehin nicht zu Strahlen mit hoher Leistungsdichte zusammengefasst werden.

Weitere Halbleiterlaser sind:

Freie-Elektronen-Laser (FEL)

Der Freie-Elektronen-Laser ist eine Synchrotronstrahlungsquelle, die gerichtete Strahlung (verschiedenste Wellenlängen von Mikrowellen bis in den Röntgenbereich, sehr hohe Brillanz) aus der Energie eines Elektronenstrahles erzeugt. Aufgrund der Kohärenz (meistens nur örtliche Kohärenz) der Strahlung wird der FEL als Laser bezeichnet. Im eigentlichen Sinne ist er jedoch kein Laser, da die Strahlung nicht durch stimulierte Emission erzeugt wird.

Freie-Elektronen-Laser besitzen außer im IR-Bereich oft keinen Resonator.

Für mehr Informationen siehe Freie-Elektronen-Laser.

Resonatoren

Laserresonatoren werden bei allen Lasergeräten verwendet, um den Strahl kohärent zu machen. Ohne den Resonator wäre der Aufbau nur ein Lichtverstärker. Die Güte des Resonators beeinflusst die Strahlqualität und die Kohärenzeigenschaften des Laserstrahls. Ein Resonator besteht prinzipiell aus zwei Spiegeln, zwischen denen Licht reflektiert wird, so dass sich der Weg des Lichtes durch das Lasermedium verlängert. Dadurch kann ein Photon sehr oft stimulierte Emission hervorrufen. Im Resonator werden nur bestimmte Frequenzen verstärkt, die die Resonanzbedingung erfüllen, für die also gilt:

Dabei ist q eine natürliche Zahl und L die Resonatorlänge.

Alle anderen Frequenzen werden durch destruktive Interferenz ausgelöscht.

Resonatortypen

Bei den Resonatoren unterscheidet man grundsätzlich zwei verschiedene Arten, die unterschiedliche Vor- und Nachteile besitzen.

Stabile Resonatoren

Ein Resonator heißt optisch stabil, wenn ein paraxialer Strahl selbst nach beliebig vielen Reflexionen den Resonator nicht verlässt.

Vorteile: Gute Strahlqualität durch geringe Beugungen innerhalb des Resonators

Nachteil: Schlechte Ausnutzung des Lasermediums

Besteht der Resonator der Länge L aus zwei gekrümmten Spiegeln mit dem Krümmungsradius ri des i-ten Spiegels so ist dieser stabil, wenn gilt:

Ist das Ergebnis gerade 0 oder 1, so nennt man den Resonator grenzstabil.

Ein Beispiel hierfür ist der konfokale Resonator. Bei ihm ist der Krümmungsradius der beiden Spiegel gleich der Resonatorlänge. Also . Das Ergebnis ist also Null was die Grenzstabilität bestätigt.

Instabile Resonatoren Vorteile: Gute Ausnutzung des Lasermedium, daher werden sie meistens in Lasern verwendet, die eine hohe Verstärkung pro Resonatorumlauf aufzeigen.

Nachteil: Schlechte Strahlqualität

Longitudinale Moden

Schwingungen werden "Moden" oder auch Schwingungsmoden genannt. Longitudinal bezeichnet die Ausbreitungsrichtung der Schwingung, die in diesem Fall der Richtung des Strahls entspricht. Bildlich ausgedrückt handelt es sich dabei um Intensitäts-Berge und -Täler im Abstand einer halben Wellenlänge. Je nach Bauart werden vom Resonator bestimmte Wellenlängen und deren Vielfache besonders verstärkt. Das Bild zeigt die Intensitätsverteilung rund um die Grundmode (angegeben als mittlere Intensität in Abhängigkeit von der Frequenz v0).

Genauer gesagt: Für die möglichen Lichtfrequenzen in einem Laserresonator gilt der Zusammenhang:

,

wo die zulässige Frequenz der N-ten Mode ist, c ist die Lichtgeschwindigkeit und L die Resonatorlänge (Abstand zwischen den Resonatorspiegeln).

Schematische Darstellung von longitudinalen Lasermoden in einem Verstärker mit Gaußförmigen Verstärkungsprofil

Durch gaußförmige Dopplerverbreiterung der ansich scharfen Emissionslinie entsteht die gaußförmige Einhüllende. Auf Grund obiger Resonatoreigenschaft (und der wieder anschließenden Dopplerverbreiterung) werden mehrere Teillinien der Emissionslinie des aktiven Mediums im Resonator verstärkt. Die einzelnen im Resonator verstärkten Teillinien haben ein Lorentzprofil mit sehr geringen Linienbreiten wegen der großen Länge der Wellenzüge im Resonator und da bei der Resonanz Störeffekte wie der Dopplereffekt in den Hintergrund treten. Somit erhält man nebenstehendes Spektrum mit mehreren Lorentzkurven (den sogenannten Lasermoden) mit einer gaußförmigen Einhüllenden. Da jedoch eine Mindestintensität nötig ist, damit im Resonator noch eine Verstärkung stattfinden kann, erhält man nur eine begrenzte Anzahl Moden, da Moden, die zu weit vom Linienschwerpunkt entfernt sind, zu wenig intensiv sind um noch verstärkt zu werden.

Der Frequenzabstand zwischen zwei benachbarten Moden ist:

Transversale Moden

Als transversale Moden bezeichnet man die Schwingungen senkrecht zur Ausbreitungsrichtung. Bildet sich also eine Mode aus, die nicht den Raum senkrecht zu den Resonatorspiegeln ausfüllt, sondern etwas schräg verläuft, so wird der Licht- und Resonatorweg länger, und die Frequenz verschiebt sich etwas. Dieses führt einerseits zum Konkurrieren um angeregte Mediumsmoleküle zwischen den verschiedenen Frequenzen (Mode Competition), andererseits können sich so stehende Wellen ausbilden, die Knotenlinien innerhalb des Laserprofils aufweisen. Ob und wie sie in einem Laserstrahl vorkommen, lässt sich durch optische Bauelemente wie Polarisationsfilter oder diffraktive optische Elemente bestimmen.

Verschiedene Intensitätsprofile für einen Resonator mit rechteckigen Spiegeln

Im Querschnitt hat die Strahlintensität im Idealfall ein Gaußprofil; dieser Modus wird als TEM_00 Mode bezeichnet. Es können jedoch auch andere Transversalmoden angeregt werden, die ein anderes Profil zeigen; abhängig von der Anzahl ihrer Knotenlinien in horizontale und vertikale Richtung werden sie als TEM_xy Mode bezeichnet (s. Bild). Für diese Moden ist teilweise der Lichtweg durch den Resonator bis zum Ausgangspunkt anders, das heißt, die Resonatorlänge erscheint verändert. Dieses kann zu einer Verfälschung der Longitudinalmodenspektren führen, indem sich die Spektren verschiedener Transversalmoden überlagern.

Es kann sich auch ein Zustand einstellen, bei dem der Strahl zweimal durch den Resonator hin- und herlaufen muss, um wieder zum Ausgangspunkt zu gelangen. Dadurch wird die effektive Resonatorlänge verdoppelt, und die Modenabstände werden auf halbiert.

Anwendungen von Lasern

Materialbearbeitung

Laser lassen sich in allen Bereichen der Fertigungstechnik nach DIN 8580 für verschiedene Fertigungsverfahren einsetzen:

Datei:Laserapfel.jpg
Ein gelasertes Logo auf einem Apfel
  • Drucktechnik
    • Belichten der Trommel in Laserdruckern, belichten oder gravieren der Druckwalzen von Druckmaschinen
    • Beschriften mit Laser Beschriften/bedrucken von Papier, Pappe, Holz, Leder, Kunststoffe und Metall durch Schmoren. Auch Farbabtrag von beschichteten Gegenständen; Farbumschlag auf Kunststoffen, Anlassbeschriftung auf Metall.

Steuerungstechnik

  • Laser-Interferometer zur hochgenauen Positionsbestimmung, z. B. in Justier- und Belichtungsautomaten der Mikroelektronik
  • Lasergeführte AGV Spurführung für fahrerlose Transportsysteme
  • In der Allgemeinmedizin wird der Laser hauptsächlich in der Diagnose eingesetzt, z. B. bei der Messung von Blutstrom und -zirkulation.
  • In der Augenheilkunde wird Laserlicht niedriger Leistung zur Diagnose eingesetzt, z. B. in der optischen Kohärenztomografie (OCT). In der Therapie kann mit höherer Leistung eine sich ablösende Netzhaut am Augenhintergrund verschweißt werden. Außerdem kann Fehlsichtigkeit durch Abtragung von Hornhautoberfläche korrigiert werden (z. B. LASIK-Operation).
  • In der Chirurgie, Gefäßchirurgie und Phlebologie wird der Laser hauptsächlich im Bereich Endoskopie oder als Laserskalpell eingesetzt. Eine weitere Anwendung ist die Behandlung von defekten Venen (Krampfadern). Hierbei kann der Laser endovenös (Laser-Lichtleiter wird in die Vene eingebracht) angewendet werden. Dieses Laser-Behandlungsverfahren ersetzt dabei das Entfernen der Vene durch "Stripping (Operation)". Die Laser-Behandlung ist in vielen Fällen schonender und ambulant durchführbar.
  • In der Dermatologie lassen sich mit Laserstrahlen Schnitte und Verödungen durchführen. Blutgefäße können durch Laser bestimmter Wellenlängen (Farbstoff-Laser; Neodym:YAG-Laser; KTP-Laser; Krypton-Laser; Kupferdampf-Laser) koaguliert werden. Pigmentflecken können mit Hilfe abladierender (= schälender) Laser (Erbium:YAG; CO2) abgetragen oder mittels gütegeschalteter Neodym:YAG-Laser selektiv zerstört werden. Subkutanes (= unter der Haut gelegenes) Pigment kann mit Hilfe eines gütegeschalteten (ultrakurz gepulsten) Lasers (Neodym; Rubin; Alexandrit) zerstört und damit entfernt werden, ohne die Hautoberfläche selber zu verletzen. Durch Verwendung von langgepulsten (5-500 ms Pulsdauer) Alexandrit-, Rubin-, Neodym- oder Diodenlasern können Haarwurzeln durch die selektive Erhitzung pigmentierter Haare dauerhaft zerstört werden. Der Excimer-Laser mit einer Wellenlänge von 308 nm wird zur gezielten Behandlung entzündlicher Hauterkrankungen, vorrangig der Psoriasis (Schuppenflechte) eingesetzt. Oberflächliche Unebenheiten der Haut (Knötchen, Fältchen) werden mit ultragepulsten CO2- oder Erbium:YAG-Lasern zur kosmetischen Verbesserung des Hautbildes geglättet (Resurfacing). Durch Laserlicht können auch subcutane Gewebe aufgewärmt werden, was in erster Linie dem Kollagenaufbau zur Straffung der Haut dienen soll ("Subsurfacing"). Vom Laser sind sogenannte Blitzlampen abzutrennen, die kein monochromatisches, kohärentes Licht emittieren. Ebenso gibt es unterschiedliche Diagnosetechniken der Konfokalen Mikroskopie, sowie der optischen Kohärenztomografie (OCT). Diese Techniken spielen aber in der Routinemedizin keine Rolle, sondern dienen eher wissenschaftlichen Fragestellungen.
  • In der Zahnmedizin kann der Laser z. B. ErYag, den Bohrer ersetzen, oder für Zahnweißung (Bleaching) verwendet werden. Diodenlaser werden in der Zahnmedizin für chirurgische Eingriffe verwendet, z. B. Lippenbändchenentfernung. Der Vorteil des Diodenlaser gegenüber der konventionellen Methode (Skalpell) ist die, das der Patient weniger bis gar keine Schmerzen mehr hat, es nicht mehr blutet, da die Wunde verödet ist und die operierte Stelle gleichzeitig dekontaminiert (keimfrei) wird.
  • In der Krebstherapie wird er für die photodynamische Therapie eingesetzt.
  • In der Urologie zur Behandlung von Nieren- und Harnleitersteinen und der Prostata (Greenlight Laser).
  • Noch in der Forschung befindliche Techniken betreffen u.a. die Versuche, Nerven unter Einsatz von Laserlicht zielgerichtet wachsen zu lassen.
  • Alternativmediziner benutzen sogenannte Softlasergeräte.

Eine Reihe von Messgeräten sind auf Laserbasis konstruiert:

Wissenschaft

  • Als Kunstobjekte
  • Zur Datenspeicherung
  • Als Messverfahren
  • Zur Bildspeicherung

Mit Lasern konnen Strukturen im µm- und Sub-µm-Bereich auf fotosensitive Materialien geschrieben werden. Mittels mikrolithographischer Systeme werden im Direktschreibverfahren hochaufgelöste Vorlagen (Masken) für verschiedenste Anwendungen erzeugt, die dann z. B. mittels breitbandiger Hochleistungslaser in der Produktion auf die endgültigen Materialien umkopiert werden. Andere Anwendungen schließen das Direktschreiben von Strukturen auf Silizium-Wafern in niedrigen Stückzahlen oder das Schreiben von Strukturen auf fotoempfindlichen Filmen (z. B. Dehnungssensoren) ein.

u.v.m.

Zukunftsvision des US Space Command für das Jahr 2020: Ein gerichteter, im Weltall stationierter Hochleistungslaser zerstört präzise ein terrestrisches Ziel (Computergrafik bzw. -zeichnung)
  • Markierung von Zielen für selbststeuernde Waffen und lasergelenkte Bomben.
  • Entfernungsmessung mittels der Lasermesseinheit für z. B. Panzer
  • Erste Versuche von Lasergewehren, die den Gegner z. B. erblinden lassen
  • Erste Hochenergielaser bodengestützt, auf Flugzeugen (Boeing AL-1) oder Schiffen zur Raketenabwehr, sogenannte Laserkanonen gibt es bereits. Sie sind einfache Laser mit hoher Energie. Der Betrieb ist noch sehr aufwendig und teuer, und die Waffen haben eine große Gefahrenzone, in der sich beim Betrieb keine Menschen aufhalten dürfen.
siehe: Tactical High Energy Laser · Energiewaffe

Unterhaltung/Medien

Laser-Klassen

Lasergeräte werden entsprechend der biologischen Wirkung von Laserstrahlung in Klassen eingeteilt. Maßgeblich für die nationalen und internationalen Laserklassen ist dabei die Definition von Grenzwerten, bei denen keine Schädigung zu erwarten ist. Neben der amerikanischen ANSI-norm gibt die International Commission on Non-Ionizing Radiation Protection Grenzwerte im Spektralbereich zwischen 400 und 1400 nm heraus.

Primär wird dabei die thermische Leistung und der Grenze bei der nichtionisierenden Strahlung gezogen. Durch die optischen Fokussiereigenschaften des Auges ist die Gefährlichkeit im sichtbaren Spektrum erhöht. Im nichtsichtbaren Bereich gibt es einen angrenzenden Bereich, in dem das Auge noch immer gut fokussiert und transparent ist.

Klassifizierung nach EN 60825-1

Entsprechend der Gefährlichkeit für den Menschen sind die Laser in Geräteklassen eingeteilt. Die Klassifizierung nach EN 60825-1 erfolgt vom Hersteller. (Die alte Klassifizierung nach DIN VDI 0837 (siehe unten) darf für neue Laser nicht mehr verwendet werden)

Klasse Beschreibung
1 Die zugängliche Laserstrahlung ist ungefährlich. (CD-Player; CD-/DVD-Brenner)
1M Die zugängliche Laserstrahlung ist ungefährlich, solange keine optischen Instrumente, wie Lupen oder Ferngläser verwendet werden.
2 Die zugängliche Laserstrahlung liegt nur im sichtbaren Spektralbereich (400 nm bis 700 nm). Sie ist bei kurzzeitiger Bestrahlungsdauer (bis 0,25 s) auch für das Auge ungefährlich. Eine längere Bestrahlung wird durch den natürlichen Lidschlussreflex verhindert. (*)
2M Wie Klasse 2, solange keine optischen Instrumente, wie Lupen oder Ferngläser, verwendet werden. (*)
3R Die zugängliche Laserstrahlung ist gefährlich für das Auge.
3B Die zugängliche Laserstrahlung ist gefährlich für das Auge und in besonderen Fällen auch für die Haut. Diffuses Streulicht ist in der Regel ungefährlich. (Laser von CD-/DVD-Brennern; Laserstrahlung allerdings nicht direkt zugänglich)
4 Die zugängliche Laserstrahlung ist sehr gefährlich für das Auge und gefährlich für die Haut. Auch diffus gestreute Strahlung kann gefährlich sein. Die Laserstrahlung kann Brand- oder Explosionsgefahr verursachen.
*) Anmerkung zu Laserklasse 2 und 2M: Durch wissenschaftliche Untersuchungen (FH Köln) wurde festgestellt, dass der Lidschlussreflex (dieser tritt im übrigen innerhalb 0,25 s auf; eine längere Bestrahlung schädigt das Auge) nur bei <20 % der Testpersonen gegeben war. Von dem Vorhandensein des Lidschlussreflexes zum Schutz der Augen darf somit in der Regel nicht ausgegangen werden.

Klassifizierung nach DIN VDI 0837

Bis März 1997 galten in Deutschland die Laserklassen nach DIN VDI 0837. Diese Einteilung ist heute noch in den USA gebräuchlich.

Klasse Beschreibung
1 entspricht der Klasse 1 nach EN 60825-1
2 entspricht der Klasse 2 nach EN 60825-1

Laser dieser Klasse werden unter Umständen heute in 1M eingestuft.

3a Die zugängliche Laserstrahlung wird für das Auge gefährlich, wenn der Strahlungsquerschnitt durch optische Instrumente verkleinert wird. Ist dieses nicht der Fall, ist die ausgesandte Laserstrahlung im sichtbaren Spektralbereich (400 nm bis 700 nm) bei kurzzeitiger Bestrahlungsdauer (bis 0,25 s), in den anderen Spektralbereichen auch bei Langzeitbestrahlung, ungefährlich.

Je nach Wellenlänge werden diese Laser heute meistens in Klasse 2M oder 3R eingestuft.

3b entspricht der Klasse 3B nach EN 60825-1

Laser dieser Klasse werden unter Umständen heute in 2M oder 3R eingestuft.

4 entspricht der Klasse 4 nach EN 60825-1

Siehe auch

Einzelnachweise

  1. Maiman, T.H. (1960) "Stimulated Optical Radiation in Ruby". Nature, 187 4736, pp. 493-494.
  2. A. Javan, W. R. Bennet, D. R. Herriot: Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture in Phys. Rev. Lett. 6, 106-110, 1961
  3. [1]; [Fraunhofer-Gesellschaft|Fraunhofer] Instiut für Werkstoff- und Strahltechnik (IWS), [Dresden]

Literatur

  • Anthony E. Siegman: Lasers. University Science Books, 1986, ISBN 0-935-70211-3. Sehr ausführliches Lehrbuch auf hohem Niveau.
  • William T. Silfvast: Laser Fundamentals. Cambridge University Press, Cambridge 2004, 2. Aufl., ISBN 0-521-83345-0
  • Kneubühl, Sigrist: Laser. Teubner Studienbücher Physik, Wiesbaden 2005, 6. Aufl., ISBN 3-8351-0032-7
  • Donges, Axel: Physikalische Grundlagen der Lasertechnik. Hüthig Verlag, Heidelberg 2000, 2. Aufl., ISBN 3-778-52800-9
Wiktionary: Laser – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Vorlage:Link FA