Zum Inhalt springen

Diskussion:Primzahl

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 25. September 2004 um 00:45 Uhr durch Modran (Diskussion | Beiträge) (Definition des Begriffs Primzahl). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Letzter Kommentar: vor 21 Jahren von Arbol01 in Abschnitt Link auf Primzahltest

Eine Zahl, die nicht Primzahl ist, nennt man zusammengesetzte Zahl.

Das ist nicht ganz korrekt. 0 und 1 sind weder Primzahl noch zusammengesetzt. Das sollte man noch irgendwie reinbringen. --Berni 22:32, 17. Dez 2003 (CET)

Danke fuer den Hinweis, das hatte ich uebersehen. --SirJective 11:41, 18. Dez 2003 (CET)

Ich habe die alte Version wieder hergestellt, da die Änderungen am Sieb des Erasblabla unsinn sind. In der Praxis wird man dies so realisieren (werd ich gleich in den Artikel schreiben), aber am Anfang weiß man ja eigentlich noch nicht, daß 2 eine Primzahl ist. Analog könnte man auch die ersten 100 Primzahlen als bekannt voraussetzen und würde letztlich nichts anderes tun als ab da anfangen zu prüfen. Die Antwort zur Frage, warum 1 keine Primzahl ist habe ich aus den unten besprochenen Gründen gelöscht. --Coma 18:38, 27. Feb 2003 (CET)

Halo Coma, zu deiner Frage zu den Primzahlen: Die Zahl ist nur durch sich selbst teilbar. Sie durch 1 zu teilen ist das gleiche, wie sie durch sich selbst zu teilen. Die Bediengung für eine Primzahl ist also nicht erfüllt! bei weiteren Fragen --> Diskusion:Primzahlen DaB.

Wer sagt denn, daß "durch 1 teilbar sein" und "durch sich selbst teilbar sein" nicht das gleiche sein darf? Die Definition verlangt nur das beides zu gleich geht. Wenn es ein und das selbe ist, geht auch beides zu gleich... darum würd ich den punkt bei "warum 1 keine primzahl ist" löschen. das ist absoluter humbug. --Coma 13:36, 25. Feb 2003 (CET)


(Aus dem Artikel hierher verschoben -- Paul Ebermann)

  • Ich störe mich an dem Satz, es sei unbekannt, ob es unendlich viele Primzahlen gibt. Wenn es keine größte Primzahl gibt, ist das meines Erachtens bereits der Beweis, dass es auch unendlich viele gibt, denn bei JEDER angenommenen Anzahl von Primzahlen wird man sagen müssen: Es gibt noch mindestens eine größere! q.e.d. (GeorgGerber)
    • Da steht ja auch: Es ist unbekannt, ob es unendlich viele Primzahlzwillinge gibt. Ein Primzahlzwilling ist ein Paar von Primzahlen mit Differenz 2, wie 3 - 5, 5 - 7, 11- 13, 17-19. -- Paul Ebermann 22:30, 27. Sep 2002 (CEST)

Jede positive ganze Zahl lässts sich eindeutig als Produkt von Primzahlen darstellen (eindeutige Primfaktorzerlegung). So besteht z.B. die Zahl 1050 aus den Primfaktoren 2 · 3 · 5 · 5 · 7.

Wenn jede ganze Zah mit einem Produkt aus primzahlen dargestellt werden kann, wie stellt man dann zum Beispiel die "7" oder die "11" dar? 7*1 geht ja nicht, da die "1" ja keine Primzahl ist, oder?

Soweit ich weiß ist das Produkt aus einer Zahl als die Zahl selbst und das Produkt aus 0 Faktoren als 1 definiert. --Caramdir 18:00, 28. Aug 2003 (CEST)
Ja, diese Festlegung ist üblich. Hab den Artikel Multiplikation entsprechend erweitert. Der Artikel über Addition sollte dann auch noch erweitert werden um Summen mit 1 oder 0 Summanden. In de.sci.mathematik war vor kurzem eine Diskussion über genau dieses Thema. Sollte man diese Festlegungen im Artikel noch begründen? --SirJective 18:52, 29. Aug 2003 (CEST)

Diskussion zur gelöschten Liste der Primzahlen von 1 - 10000

Ich frage mich, ob wir solche Listen wirklich brauchen, und wenn ja, ob die wirklich so lang sein müssen? Es gibt eine gute "Suchmaschiene" die alle möglichen Listen von Zahlen ausspuckt:

http://www.research.att.com/~njas/sequences/

--Coma 18:57, 1. Mär 2003 (CET)

Ich find so eine Liste recht unerotisch, ein Artikel über das Finden von Primzahlen mit einem Beispiel (kann gern 1-1000 sein) ist doch viel besser. -- TomK32 19:35, 1. Mär 2003 (CET)
Seh ich auch so, und unter Primzahl steht es sogar schon, von da kam ja diese Liste ursprünglich. Also doch weg damit? --Coma 15:36, 2. Mär 2003 (CET)

Die Frage ist nicht, ob man etwas unerotisch findet oder nicht, sondern ob ein Wikipedia Artikel abgerufen wird oder nicht. Wartet doch einfach 5 Jahre ab. Wenn dann die Liste weniger als 20 mal abgerufen wurde, bringt sie wahrscheinlich den Wikipedia Lesern nichts. Benutzer:rho

Nein, die Frage ist, ob so etwas in die Wikipedia gehört oder nicht. Das entscheidet sich nicht daran, wie oft die Seite aufgerufen wird. Wir wollen ja nicht das ganze Web überfüssig machen, sondern eine Enzyklopädie aufbauen. Und selbst wenn wir danach entscheiden, wie oft die Seite aufgerufen wird. Das kann ja auch daran liegen, das sie umstritten ist.
Solche Listen von Zahlen gehören meiner Meinung nach nicht hier hin. Stattdessen kann man auch einen Link auf eine entsprechende Website angeben, die solche Zahlen bereithält. Davon hat der Nutzer in aller Regel wohl auch mehr. Denn die Liste kann viel länger sein oder spezielle Probleme werden detailierter erläutert. --Coma 20:08, 2. Mär 2003 (CET)


Ich bin dafür, die Primzahlen bis 101 in Primzahl zu übernehmen und dann weg mit diesem Artikel. Es ist nichts dagegen einzuwenden, kurze Listen als Beispiele zu verwenden, z.B. Primzahlenpaare wie 9857/9859 oder meinetwegen die größten bekannten Primzahlen (nicht unbedingt in voller Dezimalschreibweise), aber die Auflistung hier hat (ebenso wie z.B. die Auflistung des gesamten menschlichen Erbgutes) keinen enzyklopädischen Informationsgehalt - für sowas gibt es Programme und Datenbanken -- JakobVoss 14:25, 8. Apr 2003 (CEST)

FULL ACK, Jakob! Flups 14:40, 8. Apr 2003 (CEST)
Bin auch für löschen. Evtl. Ersetzen der Liste durch ein Java-applet zur Primzahlerzeugung? -- Schewek 17:29, 10. Apr 2003 (CEST)
löschen ja! Java-Applet nein! höchstens externer Link auf entsprechendes Applet! Ich lösch so gerne darf ich? --Coma 17:40, 10. Apr 2003 (CEST)
Nur zu! --nerd 17:45, 10. Apr 2003 (CEST)

falls sie mal jemand braucht, hier die liste, die diskussion wird wohl besser nicht gelöscht... --Coma 17:59, 10. Apr 2003 (CEST)

Der Übersicht halber habe ich trotzdem mal Deine Primzahlliste gelöscht und durch 2 externe Links ersetzt (für die ich die volle verantwortung übernehme):

  • Die Primzahlen bis 2 Millionen als Textdatei (ca. 1,2MB)[1]
  • Die Primzahlen bis 20 Millionen als Textdatei (ca. 11,3MB)[2]

--Modran 22:44, 24. Sep 2004 (CEST)


Der Artikel Primfaktorzerlegung redirected hierher, ich kann hier jedoch keine Darstellung der Zerlegung ganzer Zahlen in Primzahlen finden (auch die kanonische Darstellung). Falls ich mal Zeit hab, baue ich das ein, waere aber nicht boese, wenn mir jemand zuvorkaeme. Ebenso muesste der Begriff zusammengesetzte Zahlen erklaert werden. --SirJective 13:56, 3. Dez 2003 (CET)

Dann bau dass doch besser unter Primfaktorzerlegung ein und verweise von hier dorthin... --Coma 15:40, 3. Dez 2003 (CET)

Alte Version zur Frage "Warum ist 1 keine Primzahl wieder hergestellt"

Der neue Text ist mathematisch durchaus korrekt. Ich bin dennoch der Meinung, dass man dem Leser die Auswahl an Antworten überlassen sollte. Die oben genannte Frage, impliziert nämlich die Frage, warum Definiert man dies und das so, und nicht anderst. Man könnte doch einfach sagen, eine Primzahl ist eine natürliche Zahl die maximal 2 natürliche Teiler hat, dann ist 1 auch eine. Geht man auf weitere Ringe über, so stellt sich heraus, dass die angegebene Definition eigentlich die Definition eines irreduziblen Elements ist, und garnicht die eines Primelements. Stenggenommen müsste man hier eigentlich die Definition eines Primelements angeben. Aber das verwirrt Leute, die sich keine Gedanken über Verallgemeinerungen machen (wollen). Da Primzahl eine der am häufigsten aufgesuchten mathematischen Seiten in der Wikipedia ist, sollte man hier vorsichtig sein.--Berni 14:21, 29. Jan 2004 (CET)

Jede zahl hat unendlich viele Teiler, wenn diese nicht unterschiedlich sein müssen. So ist
  • 1 = 1*1*1*1...
  • 2 = 2*1*1*1*1...
  • 3 = 3*1*1*1*1*1...
  • 4 = 2*2*1*1*1...
  • 5 = 5*1*1*1...
  • 6 = 2*3*1*1*1... etc.
Wenn die 1 eine Primzahl WÄRE, dann würde folgende Definition gelten: Eine Zahl ist genau DANN eine Primzahl, wenn ihre Zerlegung außer sich selbst und der 1 keine anderen Zahlen enthält.
Das klingt einfach und logisch. Mathematik untersucht aber keine Naturgesetze, sondern formale Systeme, und davon gibt es unendlich viele, die allesamt völlig gleichberechtigt sind. man kann die 1 als primzahl definieren oder auch nicht - es geht nur darum, welches der beiden Systeme am zweckmäßigsten ist. --Modran 22:53, 24. Sep 2004 (CEST)

Babbages Vermutung

Ich weiß zwar nicht mehr wo ich es gelesen habe, aber es gibt die Vermutung von Charles Babbage, daß wenn p eine Primzahl ist, das folgendes gilt:

Irgendwie hat p3-3 auch noch irgendwie damit zu tun. --Arbol01 13:36, 30. Apr 2004 (CEST)

Ach ja, für die Primzahlen 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 47 und 53 trifft diese Vermutung zu. Eine Pseudoprimzahl tritt bis 53 auch nicht auf. Mal sehen. --Arbol01 14:23, 30. Apr 2004 (CEST)

Ich habe jetzt im "The new Book of the Prime Number Records" folgende Formel (wieder(gefunden):

Allerdings nicht unter dem Namen Babbage, sondern mehr oder weniger unter "The Property of Wolstenholme". --Arbol01 23:21, 10. Mai 2004 (CEST)Beantworten

Beweise für die Existenz unendlich vieler Primzahlen

Ich muß doch mal schreiben, das Du Benutzer:Coma, den entsprechenden Mathematikern unrecht tust, wenn Du ihnen vorwirfst, man könne eine Reihe von beweisen immer leicht konstruieren. Wenn du Dir die Beweise nämlich mal anschaust (für die nuch nicht ausgeführten mußt Du allerdings das Buch "The new Prime Records" von Paolo Ribenboim lesen, und die sind dann wirklich knackig) wirst Du feststellen, das sich hinter einer ganzen Menge Perlen befinden.

Da hast du was falsch verstanden. Konstruhieren kann man eine Reihe von Beweisen nat. nur dann, wenn man schon einen hat! Man fügt einfach ein paar an sich überflüssige, d.h. nicht notwendige aber dennoch nicht falsch Schritte ein. Deshalb hat mich die Formulierung gestört. Zumal man den Begriff "Reihe" in einem mathematischen Artikel auch noch missverstehen kann, nämlich genau in dem von mir vorgegebenen Sinne. Statt einen nicht notwendigen, kann ich ja beliebig viele nicht notwendige Schritte in einen Beweis einfügen. Formal betrachtet sind das dann alles unterschiedliche Beweise. Mal ganz abgesehen davon, dass es schwer ist zu definieren wann Beweise identisch sind. Das ist mehr ein Gefühl. --Coma 19:30, 4. Mai 2004 (CEST)Beantworten

Der Satz von Euklid ist übrigens nicht nur ein Satz, sondern ein echter Beweis. Ein Beweis durch Widerspruch, um genau zu sein. --Arbol01 17:53, 3. Mai 2004 (CEST)Beantworten

Dem stimme ich zu. Der "Satz von Euklid" ist immer mit einem bestimmten Beweis verknuepft, der selbst als der Satz bezeichnet wird. --SirJective 11:49, 4. Mai 2004 (CEST)Beantworten
Prinzipiell unterscheidet man immer eine Aussage (also einen Satz, eine Vermutung) von einem Beweis, der eine Vermutung zu einem Satz werden lässt. Wenn das in diesem speziellen Fall im Sprachgebrauch anders sein sollte (was ich bezweifle) sollte man das erwähnen, denn sonst trägt die jetztige und alte Version nicht unbedingt dazu bei, dass wir hier irgendwann mal eine stabile Version des Artikels hinbekommen. Vielleicht mag das im Schulunterricht (und manchmal auch an der Uni) nicht so genau auseinander gehalten werden, weil man den Satz von Euklid immer mit dem Beweis von Euklid serviert bekommt, aber genau genommen ist falsch. Wenn ich den Satz von Euklid mit einem anderen als dem Beweis von Euklid beweise, ist es ja immernoch die selbe Aussage und heißt dann immernoch Satz von Euklid. Wenn man Satz und Beweis vermengt, führt dies immer zur Verwirrung. --Coma 19:30, 4. Mai 2004 (CEST)Beantworten
Hmm... Ein bisschen googlen bringt mich zu der Erkenntnis, dass es einige "Saetze von Euklid" gibt:
  1. Satz von Euklid ueber Primzahlen
  2. Kathetensatz oder Satz des Euklid ([3])
  3. "Erster Satz von Euklid": fuer Primzahl p gilt: p|ab -> p|a oder p|b ([4]) (Punkt 1 wird dort "Zweiter Satz von Euklid" genannt)
  4. "Satz von Euklid": Wenn 2n-1 eine Primzahl ist, dann ist (2n-1)*(2n-1) vollkommen. ([5])
Der Primzahl-Satz wird in den Texten, die ich gefunden habe, stets nur mit Euklids Beweis angegeben. Aber du hast recht, Coma, als Satz sollte nur die Aussage bezeichnet werden, nicht ihr Beweis. Was machen wir da nun? --SirJective 13:26, 5. Mai 2004 (CEST)Beantworten
Mir ist das ja auch schon aufgefallen. Es heißt "Satz von Euklid" und es heißt "Satz von Thales". Beide heissen sie Sätze, aber beide sind sie etwas völlig unteschiedliches. Das der "Satz von Euklid" ein Beweis ist, steht dabei ausser Frage. Soll man jetzt den "Satz von Euklid" in Beweis von Euklid" umbebennen.
Übrigens, die anderen Beweise, bezüglich der unendlichen Anzahl von Primzahlen sind durchaus nicht Variationen des Beweises Von Euklid. Insbesondere ist es der Beweis von Goldbach nicht. --Arbol01 13:43, 5. Mai 2004 (CEST)Beantworten
"Prinzipiell unterscheidet man immer eine Aussage (also einen Satz, eine Vermutung) von einem Beweis, der eine Vermutung zu einem Satz werden lässt."
Huch? Was ist denn jetzt der "Satz" - die Vermutung oder der Beweis? Natürlich letzteres! Ein Satz (Mathematik) ist eine bewiesene Vermutung. Wo ist das Problem? --Modran 22:58, 24. Sep 2004 (CEST)

größte Primzahl und unendlich viele Primzahlen

Hallo Arb01,

Du schreibst

Der Satz von Euklid besagt, dass es keine größte Primzahl gibt. Dies ist identisch mit der Aussage, dass es unendlich viele Primzahlen gibt.

Im Allgemeinen kann man so nicht folgern. Gegenbeispiel: Die Aussage "Es gibt keine größte durch 10 teilbare Primzahl" impliziert NICHT "Es gibt unendlich viele durch 10 teilbare Primzahlen". Richtig ist vielmehr: Es gibt überhaupt keine durch 10 teilbare Primzahlen.

Obiges Folgerungs-Prinzip kann man so retten:

Es gibt mindestens eine Primzahl UND es gibt keine größte Primzahl <==> Es gibt unendlich viele Primzahlen.

tsor 20:38, 3. Mai 2004 (CEST)Beantworten

Hallo Tsor,

"Du schreibst

Der Satz von Euklid besagt, dass es keine größte Primzahl gibt. Dies ist identisch mit der Aussage, dass es unendlich viele Primzahlen gibt. "

Nein, das habe ich nicht geschrieben. Ich habe es nur, wie eine Menge anderer Leute durchgehen lassen.

"::Es gibt mindestens eine Primzahl UND es gibt keine größte Primzahl <==> Es gibt unendlich viele Primzahlen."

An dieser, an und für sich richtigen Folgerung ist ein Haken. Wenn es keine Primzahl gibt, warum gibt es dann diesen Artikel über Primzahlen. Keiner bezweifelt die Existenz von Primzahlen. Die Frage, bis spätistens Euklid, war ob es endlich viele oder unendlich viele Primzahlen gibt. Und so ist die obige, zugegebenerweise etwas unglücklich formulierte Aussage korrekt. --Arbol01 21:23, 3. Mai 2004 (CEST)Beantworten

Diese - auch in das Sieb des Eratosthenes eingegangene - Formulierung wurde uebrigens von Coma gewaehlt. Unter der Voraussetzung, dass die Existenz einer Primzahl bekannt ist, ist sie richtig. Arbols Neuformulierung ist mMn sogar besser als der Abschnitt, wie er vor Comas Aenderung war. --SirJective 12:23, 4. Mai 2004 (CEST)Beantworten
"Wenn es keine Primzahl gibt, warum gibt es dann diesen Artikel über Primzahlen."
Bei dieser Frage übersiehst Du einen wichtigen Aspekt der Mathematik: Wenn Mathematiker Aussagen über ein Objekt machen, dann folgt daraus nicht, daß es dieses Objekt auch wirklich gibt. Und dies gilt nicht nur für Mathematiker, siehe Nihilartikel. Der Beweis dafür, daß es mindestens eine Primzahl gibt, muß also geführt werden - was allerdings trivial ist. ;) --Modran 23:07, 24. Sep 2004 (CEST)

Warum ist die 1 keine Primzahl - Sieb des Eratosthenes

Hab folgenden Absatz aus dem Artikel entfernt:

  • Eine komplexere Antwort bietet das Sieb des Eratosthenes. Dieses ist ein Verfahren zum heraussieben von Nichtprimzahlen. Alle Zahlen sind zu Anfang Primzahlen. Die erste Zahl wird als Primzahl markiert, und daraufhin alle Vielfachen der Primzahl ausgestrichen. Danach wird die erste nicht ausgestrichene Zahl als Primzahl markiert, und so weiter. Standardmässig beginnt man mit der 2, denn würde man mit der 1 als Primzahl beginnen, dann würde keine nicht ausgestrichene Primzahl mehr übrig bleiben.

Dies ist fuer mich keine Antwort auf die Frage. Das Siebverfahren funktioniert, weil die 1 keine Primzahl ist, nicht umgekehrt. Waere die 1 eine Primzahl, waere der Siebalgorithmus etwas anders. --SirJective 11:49, 4. Mai 2004 (CEST)Beantworten

Das das Siebverfahren nur deswegen funktioniert, weil die 1 keine Primzahl ist, stellt doch keiner in Frage. Die Argumentation soll ja gerade darauf zielen, das die 1 keine Primzahl sein kann, weil sonst das Siebverfahren nicht funktionieren kann. Es soll die "Daumenschrauben" für "1 ist keine Primzahl"-Zweifler etwas enger schrauben. Mehr nicht. --Arbol01 12:02, 4. Mai 2004 (CEST)Beantworten
Dieses Siebverfahren funktioniert, wenn 1 keine Primzahl ist. Wenn aber 1 eine Primzahl ist, funktioniert ein anderes Siebverfahren. Dieser Algorithmus ist mMn kein Argument fuer oder gegen die Primalitaet der 1. Ebensowenig wie "ohne die 0 gibt es kein neutrales Element der Addition in den natuerlichen Zahlen" fuer sich genommen kein Argument dafuer ist, die 0 zu den natuerlichen Zahlen hinzuzunehmen. --SirJective 12:23, 4. Mai 2004 (CEST)Beantworten

Definition des Begriffs Primzahl

Wenn ich die alte Einleitung

Eine Primzahl p ist eine natürliche Zahl, die genau zwei natürliche Teiler hat - nämlich 1 und die Zahl p selbst. Diese Definition impliziert, dass die beiden Teiler voneinander verschieden sind (durch das Wort „genau“).

mit der neuen vergleiche

Eine Primzahl p ist eine natürliche Zahl, die genau zwei natürliche Teiler hat. Nämlich die 1 und die Zahl p für die 1<p gilt.

faellt mir auf, dass die Bedingung p>1 wieder drin ist, die durch die umstaendliche alte Formulierung vermieden werden sollte. Wenn wir diese Bedingung wieder drin haben, koennen wir gleich schreiben

Eine Primzahl p ist eine natürliche Zahl größer als 1, die nur die Zahlen 1 und p als positive Teiler hat.

--SirJective 12:23, 4. Mai 2004 (CEST)Beantworten

Auch ich halte letzendlich diese Formulierung "Eine Primzahl p ist eine natürliche Zahl größer als 1, die nur die Zahlen 1 und p als positive Teiler hat." für besser.
Das Problem ist ja immer, das irgendeinem Menschen diese Formulierung wieder nicht passt (Siehe Coma). --Arbol01 12:52, 4. Mai 2004 (CEST)Beantworten
Ich hab jetzt beide verbreiteten Definitionen reingeschrieben. Ist es recht, dass ich die Liste der Primzahlen und der zusammengesetzten Zahlen reingeschrieben habe? --SirJective 14:23, 4. Mai 2004 (CEST)Beantworten

Die "auch für Laien geeignete" Definition

Eine Primzahl ist eine (positive) ganze Zahl, die nur durch die Zahl 1 und sich selbst (ganzzahlig) teilbar ist.

ist leider falsch, und das auch nach meinem Einschub, dass die Zahl größer als 1 sein muss:

Eine Primzahl ist eine ganze Zahl, die größer als 1 ist und nur durch die Zahl 1 und sich selbst (ganzzahlig) teilbar ist.

Denn ganzzahlig ist jede ganze Zahl auch durch -1 teilbar... Wolfgang1018, meinst du, wir finden irgendwann eine einfache richtige Definition? --SirJective 12:07, 22. Sep 2004 (CEST)

Deine Einwände, SirJective, sind berechtigt! Danke für die Berichtigung und den Hinweis. Weil hier schon lange um eine einfache, aber korrekte Definition für die Einleitung gerungen wird, habe ich nochmals mit mir gerungen und mir eine zwar etwas längere, aber dennoch einfache, gut nachvollziehbare Formulierung überlegt und diese auch gleich in dem anschließenden Beispiel und Gegenbeispiel berücksichtigt. Ich hoffe, wir sind damit einer einfachen richtigen Definition näher oder sogar ganz nahe gekommen. Wolfgang1018 13:12, 22. Sep 2004 (CEST)

Sollte im ersten Satz nicht "ganze Zahl" durch "natürlich Zahl" ersetzt werden? -- tsor 19:23, 24. Sep 2004 (CEST)
Mmmmhhhhh, würde ich irgendwie auch sagen. Obwohl die ganzen Zahlen nicht im Wiederspruch stehen. (-2) z.B. ist durch vier Zahlen teilbar, nämlich -2, -1, 1 und 2. --Arbol01 20:04, 24. Sep 2004 (CEST)
Von negativen Promzahlen habe ich auch noch nichts gehört oder gelesen. Bei der "Formellen Definition" ein paar Zeilen ist auch von "natürlichen Zahlen" die Rede. Vielleicht sollten wir hier noch ein paar Meinungen abwarten bevor wir die mühsam erarbeitete Formulierung abändern. -- tsor 21:13, 24. Sep 2004 (CEST)
Ich habe jetzt das erste ganze Zahl durch natürliche Zahl ersetzt. Ehrlich gesagt finde ich die ganze Definition zum kringeln. Ob die wirklich einfacher zu verstehen ist, wage ich zu bezweifeln. Aber sei es drum. --Arbol01 22:22, 24. Sep 2004 (CEST)
"Eine Primzahl ist eine natürliche Zahl, die selbst größer als 1 ist und von allen ganzen Zahlen größer als Null nur durch die Zahl 1 und sich selbst (ganzzahlig) teilbar ist, d.h. dass das Teilen (die Division) nur bei diesen beiden Fällen genau aufgeht und kein Rest oder Bruchteil verbleibt."
Ist das wirklich Euer Ernst? ;)
Über 50 Worte, um simple Primzahlen zu definieren? Das geht auf keinen Fall! Ich überleg mir mal was... ;) --Modran 23:16, 24. Sep 2004 (CEST)
Der Unterschied zwischen "ganze Zahl größer als 1" und "natürliche Zahl größer als 1" ist eher gering ;) Wolfgang, welcher Begriff sollte Schülern eher bekannt sein, ganze Zahl oder natürliche Zahl? Oder kennen die nur "Zahl"?
Die -2 entspricht nicht der Definition einer Primzahl, aber die Begriffe "Primzahl" und "zusammengesetzte Zahl" sind auch nur für natürliche Zahlen definiert. Die formale Definition sollte also unangetastet bleiben.
Die Einleitung ist jetzt immerhin richtig. Vielleicht sollte man die Liste der ersten Primzahlen und zusammengesetzten Zahlen mit an den Anfang verlegen, ist vielleicht zur Verdeutlichung hilfreich? --SirJective 23:20, 24. Sep 2004 (CEST)
Was spricht denn gegen: "Eine (natürliche) Zahl ist (genau dann) prim, wenn sie mindestens zwei verschiedene (natürliche) Teiler aufweist"?
Wobei man wieder darauf hinweisen müßte, daß in diesem Fall 0 nicht zu den natürlichen Zahlen gehört - und wir haben wieder dasselbe problem, nur auf einer anderen Ebene...
Letztlich ist die Mathematik keine Naturwisenschaft. Sie wählt beliebige Axiome und Definitionen aus einer unendlichen Fülle vom Möglichkeiten aus. Deshalb muß sie immer wieder zeigen, daß die wenigen von ihr ausgewählten Systeme eine praktische Relevanz haben. Ein System, in dem die 1 eine primzahl ist, ist viel trivialer als eins, in dem sie es nicht ist, denn in diesem System ist 1 die EINZIGE Primzahl!
Ein solches System lohnt nicht der weiteren Untersuchung, es gibt darin nichts mehr zu entdecken! Volkswirtschaftlich gesprochen kann man dafür keine Fördergelder bekommen, weil es nichts zu untersuchen gibt. Die Primzahlen (ohne 1) hingegen haben - anders als noch vor 100 jahren - plötzlich eine enorme wirtschaftliche Bedeutung (eben weil der simple Verzicht auf die 1 ein enorm Komplexes System erzeugt)! Ich bin zwar auch ein Freund von freier Information wie in Wiki, aber manche persönliche Daten DARF ich einfach nicht unverschlüsselt über das Inet schicken - und die Primzahlen sind derzeit unsere einzige Möglichkeit, eine sichere Verschlüsselung zur Verfügung zu stellen. --Modran 23:43, 24. Sep 2004 (CEST)
Dagegen spricht, dass 4 eine natürliche Zahl ist, die mindestens zwei verschiedene natürliche Teiler hat. ;)
Ob die 0 zu den natürlichen Zahlen gehört oder nicht ist für Primzahlen ausnahmsweise völlig irrelevant, da es sowieso nur um "natürliche Zahlen größer als 1" geht und die 0 sowieso nicht Teiler einer solchen Zahl sein kann.
Ja, Mathematik ist sehr willkürlich bei der Wahl der Axiome und Definitionen, trotzdem sehe ich nicht die Notwendigkeit einer praktischen Relevanz. Ich denke, es geht an dieser Stelle der Diskussion nicht darum, ob die 1 eine Primzahl ist (dafür gibt's nen anderen Abschnitt hier), sondern um eine möglichst verständliche Formulierung des allgemein anerkannten Primzahlbegriffs. --SirJective 00:38, 25. Sep 2004 (CEST)
Ups ;) ja, ok. Ich hab trotzdem eine Ergänzung gemacht, was hälst Du davon? --Modran 00:45, 25. Sep 2004 (CEST)

Fermat's kleiner Satz kein Primzahltest an sich

Muß die Legende, das der kleine Fermat ein Primzahltest auf Wahrscheinlichkeit ist, auf Gedeih und verderb aufrecht erhalten werden? In den meisten Büchern, mal Abgesehen von "Zahlentheorie für Anfänger" das sein Geld nicht wert ist, wird der kleine Fermat, aus gutem Grund, nicht mal erwähnt (er ist ewig langsam). All diese Primzahltests auf Wahrscheinlichkeit umgehen den kleinen Fermat vollständig, und abeiten mit Legendre- und Jacob-Symbolen und anderen Methoden. Man kann mit dem kleinen Fermat einen wasserdichten Primzahltest basteln, den ich allerdings hauptsächlich als Pseudoprimzahl-Finder benutzt habe. --Arbol01 00:12, 18. Mai 2004 (CEST)Beantworten

Ich fände es praktisch, wenn der Link beim ersten Auftreten von Primzahltest gesetzt wird -- hinterher braucht man nicht unbedingt noch einen. Kommt halt drauf an, wie man den Artikel liest: nach dem Inhaltsverzeichnis käme man gleich auf das Kapitel, das eigentlich nur aus dem Verweis besteht, wenn man den Artikel von oben nach unten liest, begegnet man zuerst der Erwähnung von Primzahltests, die im Moment nicht verlinkt ist... gibt's da nicht noch ne bessere Lösung? --Pinguin.tk 11:11, 18. Mai 2004 (CEST)Beantworten

Ich habe den Punkt, der die Primzahltests betrifft, nach oben (über die Primzahleigenschaften) verschoben. Damit tritt nun der Link "Primzahltest" als erstes auf. --Arbol01 11:35, 18. Mai 2004 (CEST)Beantworten

neues

Ben Green von der der University of British Columbia in Vancouver und Terence Tao von der Univerity of California in Los Angeles konnten beweisen das es unendlich viele Primzahlen gibt die einen gleichen abstand voneinander haben. Z.B. 6,8,10,... hat immer den abstand 2 . Es handelt sich um einen existenbeweis er enthält keine anweisung wie man eine dieser zahlen berechnen kann. Übrigen die längste bekanntes reihe beinhaltet 22 zahlen(11 410 337 850 553, 16 019 436 544 753,usw.) quelle geo 10/2004 seite 206 Luk 18:13, 16. Sep 2004 (CEST)

Da kommt der gute Ben Green und Terence Tao ca 100 Jahre zu spät. Das hat schon Dirichlet bewiesen, auch als Satz von Dirichlet bekannt.