Zum Inhalt springen

Wärmeleitungsgleichung

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 26. November 2006 um 20:49 Uhr durch Bota47 (Diskussion | Beiträge) (Bot: Ergänze: cs:Rovnice vedení tepla). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Die Wärmeleitungsgleichung oder Diffusionsgleichung ist eine partielle Differentialgleichung. Sie ist das typische Beispiel einer parabolischen Differentialgleichung. Sie beschreibt die Temperaturverteilung eines Körpers durch Wärmeleitung oder die Ausbreitung eines gelösten Stoffes durch Diffusion.

Die Wärmeleitungsgleichung in einer Raumdimension lautet:

Hier kann zum Beispiel die Temperaturverteilung in einem dünnen Stab bezeichnen (wobei die Temperaturleitfähigkeit ist).

Allgemein in Dimensionen lautet die Wärmeleitungsgleichung:

,

wobei der Laplace-Operator ist, also z.B. im 3-dimensionalen . Im stationären Fall, wenn also die Zeitableitung Null ist, geht die Gleichung in die Laplace-Gleichung über.

Lösungen

Die 1-dimensionale Fundamentallösung lautet:

Eine n-dimensionale Fundamentallösung ist gegeben durch

K wird auch als „Heat Kernel“ bezeichnet.

Weitere Lösungen

1) In manchen Fällen kann man Lösungen der Gleichung finden mit Hilfe des Symmetrieansatzes:

Dies führt auf die folgende gewöhnliche Differentialgleichung für f:

2) Eine weitere 1-dimensionale Lösung lautet

,

wobei c eine Konstante ist. Mit ihr kann man das Wärmespeicherungsverhalten modellieren, wenn ein Gegenstand (mit einer zeitlich sinusförmigen Temperatur) erhitzt wird.

Siehe auch: Wärme, Wärmeübertragung, Wärmekapazität, spezifische Wärmekapazität, Wärmeleitkoeffizient, Temperaturleitfähigkeit, Diffusion, Brownsche Molekularbewegung