Elektrolyt
Ein Elektrolyt ist ein Stoff, der beim Anlegen einer Spannung unter dem Einfluss des dabei entstehenden elektrischen Feldes den elektrischen Strom leitet (Leiter), wobei seine elektrische Leitfähigkeit und der Ladungstransport durch die Bewegung von Ionen verursacht wird. Elektrolyte sind wie ionisierte Gase Ionenleiter.
Die chemische Leitfähigkeit von Elektrolyten ist geringer als bei typischen Metallen. Außerdem treten an den Elektroden chemische Vorgänge auf.
Einteilung
Elektrolyte sind im weitesten Sinne Stoffe, die zumindest teilweise in Ionen vorliegen. Man unterscheidet dabei
- gelöste Elektrolyte
- starke Elektrolyte, die vollständig in Ionen gespalten werden, wenn sie gelöst werden, und
- schwache Elektrolyte, die zum Teil als Moleküle in Lösung gehen.
- Festkörper
Ein echter Elektrolyt ist ein Stoff, der im festen Aggregatzustand aus Ionenkristallen besteht und in Schmelze oder Lösung, in besonderen Fällen auch als Feststoff (siehe unten), den elektrischen Strom leitet.
Beispiele:
- NaCl(s) → Na+(aq) + Cl-(aq)
- NaOH(s) → Na+(aq) + OH-(aq)
Bei einem potentiellen Elektrolyt dagegen entstehen die Ionen erst durch die Reaktion mit dem Lösungsmittel.
Beispiel:
Flüssigkeiten
Elektrolyte im Sinne von Ionenleitern erfordern bewegliche Ionen. Daher sind alle Flüssigkeiten, die Ionen enthalten, Elektrolyte. Flüssige Elektrolyte sind sowohl die Salzschmelzen und die ionischen Flüssigkeiten als auch alle flüssigen Lösungen von Ionen. Salzschmelzen und ionische Flüssigkeiten bestehen im Extremfall nur aus Ionen, sie können aber gelöste Moleküle enthalten. Bei wässrigen oder organischen Elektrolytlösungen ist es umgekehrt: Hier besteht das Lösungsmittel aus Molekülen, und die Ionen sind darin gelöst. Die Herstellung einer Elektrolytlösung kann dabei im bloßen Auflösen von schon vorhandenen Ionen bestehen, oder in einer chemischen Reaktion, bei der Ionen entstehen, beispielsweise einer Säure-Base-Reaktion wie bei der Auflösung von Molekülen wie Chlorwasserstoff oder Ammoniak in Wasser.
Festkörper
Auch Festkörper können bewegliche Ionen enthalten. Gerade bei hohen Temperaturen werden beispielsweise in aus Ionen bestehenden Festkörpern Ionen beweglich. Es gibt aber auch feste Elektrolyte, die bei Raumtemperatur verwendet werden können, oder bei nur wenig erhöhten Temperaturen. Dazu gehören auch die in manchen Brennstoffzellen verwendeten Polymerelektrolyt-Membranen. Sie bestehen aus einem Kunststoffgerüst, das ionische Seitengruppen enthält. Wichtige Ionenleiter sind z. B. manche Natriumaluminate. Neben der Anwendung in Brennstoffzellen sind Festelektrolyte auch in Sensoren wichtig, etwa der Lambdasonde, die einen Elektrolyt enthalten, der Sauerstoffionen leitet (z. B. YSZ, yttria stabilized zirconia, eine Mischung von Zirkoniumdioxid ZrO2 und Yttriumoxid Y2O3). Auch die um 1900 als Glühlampe gebräuchliche Nernstlampe verwendete solche Festelektrolyte.
Biologische Elektrolyte
Die wichtigsten Ionen biologischer Elektrolyte sind Natrium, Kalium, Calcium, Magnesium, Chlorid, Phosphat und Hydrogencarbonat. Sie sind im Cytosol enthalten, und für die Funktion der Zellen unentbehrlich. Noch weitere Ionen sind als Spurenelemente für die Zelle notwendig, doch sind die genannten Ionen besonders bedeutend im Hinblick auf das Elektrolytgleichgewicht der Zelle, da sie bei der Regulierung des osmotischen Drucks eine herausragende Rolle spielen.
Physiologie
Alle höheren Lebensformen halten ein subtiles und komplexes Elektrolytgleichgewicht zwischen ihrem intrazellulären (in ihren Zellen) und extrazellulären (außerhalb oder zwischen ihren Zellen) Milieu aufrecht. Insbesondere ist die Aufrechterhaltung genauer osmotischer Gradienten wichtig. Diese Gradienten beeinflussen und regulieren den Wasserhaushalt des Körpers und den pH-Wert des Blutes. Auch für die Funktion von Nerven- oder Muskelzellen spielen Elektrolyte eine zentrale Rolle. Die Regelung der Elektrolytkonzentration in der Zelle erfolgt mit Hilfe von Ionenkanälen.
Das Elektrolytgleichgewicht wird aufrecht erhalten durch die orale Zufuhr und intestinale Absorption elektrolythaltiger Nahrung und Substanzen, und wird reguliert durch Hormone. Ein Überschuss wird im Allgemeinen über die Niere ausgeschieden. Beim Menschen wird die Homöostase (Selbstregulation) der Salze durch Hormone wie Antidiuretisches Hormon (ADH), Aldosteron und Parathormon (PTH) gesteuert.
Ursachen für Störungen des Elektrolythaushaltes können Elektrolytverluste (bspw. durch Durchfall, Erbrechen) oder Störungen endokriner Drüsen sein. Schwer wiegende Elektrolytstörungen können zu Herz- und Nervenschäden führen und sind meist medizinische Notfälle, wie zum Beispiel das Elektrolytkoma.
Gemessen werden die Elektrolyte über Blut- und Urintests. Die Deutung dieser Werte ist ohne Betrachtung der Anamnese schwierig und ohne die gleichzeitige Untersuchung der Nierenfunktion oft unmöglich. Die am häufigsten untersuchten Elektrolyte sind Natrium und Kalium. Der Chloridspiegel wird selten gemessen, da er inhärent mit dem Natriumspiegel zusammenhängt.
Ernährung
Elektrolythaltige Getränke mit Natrium- und Kaliumsalzen werden benutzt, um Elektrolyte nach Dehydratation nachzufüllen. Verursacht wird dieser Flüssigkeits- und damit Elektrolytverlust durch starkes Schwitzen (körperliche Arbeit), Durchfall, Erbrechen oder Unterernährung. Reines destilliertes Wasser ist nicht hilfreich, da es den Körperzellen Salze entzieht und deren chemische Funktionen beeinträchtigt. Dies kann zu Hyperhydration führen.
Sportgetränke enthalten neben den Elektrolyten große Mengen Kohlenhydrate (z. B. Glukose) als Energiespender. Durch den hohen Zucker-Anteil sind sie nicht auf Dauer für Kinder geeignet. Auch erwachsenen Dauernutzern ist Vorbeugung gegen Zahnkaries empfohlen.
Die frei verkäuflichen Getränke sind gewöhnlich isotonisch, das heißt deren Osmolarität liegt nahe der des Blutes. Hypotonische (niedrigere Osmolarität) und Hypertonische (höhere Osmolarität) Getränke sind verfügbar für Leistungssportler abhängig von deren besonderen Ernährungsbedürfnissen.
Elektrolyt- und Sportgetränke können auch selbst hergestellt werden durch die richtigen Anteile Zucker, Salz und Wasser [bitte mal Rezept / Mischungsverhältnis angeben].
Elektrochemische Anwendungen
Eine wichtige Anwendung von Elektrolyten ist der Gebrauch bei der Elektrolyse, einschließlich der Galvanik. Elektrolyte sind auch notwendige Bestandteile von Batterien, Akkumulatoren und Elektrolytkondensatoren. Zur Herkunft des von Michael Faraday geprägten Begriffes Elektrolyt siehe auch „Faradaysche Gesetze“, zur Bedeutung der Elektrolytkonzentration siehe auch Nernst-Gleichung.