C = W 0 − W P = − ∫ P 0 P d W = ∫ g d n {\displaystyle C=W_{0}-W_{P}=-\int _{P_{0}}^{P}\,dW=\int _{}^{}g\,dn}
H d y n = C γ 0 45 {\displaystyle H^{dyn}={\frac {C}{\gamma _{0}^{45}}}}
H = C g ¯ , g ¯ = 1 H ∫ 0 H g d H {\displaystyle H={\frac {C}{\bar {g}}},{\bar {g}}={\frac {1}{H}}\int _{0}^{H}g\,dH}
H N = C γ ¯ , γ ¯ = 1 H N ∫ 0 H N γ d H N {\displaystyle H^{N}={\frac {C}{\bar {\gamma }}},{\bar {\gamma }}={\frac {1}{H^{N}}}\int _{0}^{H^{N}}\gamma \,dH^{N}}
C = W 0 − W P = − ∫ 0 P g d n {\displaystyle C=W_{0}-W_{P}=-\int _{0}^{P}g\,dn}
d g g = d ( △ n ) △ n {\displaystyle {\frac {dg}{g}}={\frac {d(\triangle n)}{\triangle n}}}
∮ d W = 0 {\displaystyle \oint \,dW=0}
△ H 1 , 2 d y n = H 2 d y n − H 1 d y n = △ n 1 , 2 + E 1 , 2 d y n {\displaystyle \triangle H_{1,2}^{dyn}=H_{2}^{dyn}-H_{1}^{dyn}=\triangle n_{1,2}+E_{1,2}^{dyn}}
E 1 , 2 d y n = ∫ 1 2 g − γ 0 45 γ 0 45 d n {\displaystyle E_{1,2}^{dyn}=\int _{1}^{2}{\frac {g-\gamma _{0}^{45}}{\gamma _{0}^{45}}}\,dn}
△ H 1 , 2 = H 2 − H 1 = △ H 1 , 2 d y n + ( H 2 − H 2 d y n ) − ( H 1 − H 1 d y n ) {\displaystyle \triangle H_{1,2}=H_{2}-H_{1}=\triangle H_{1,2}^{dyn}+(H_{2}-H_{2}^{dyn})-(H_{1}-H_{1}^{dyn})}
△ H 1 , 2 = △ n 1 , 2 + E 1 , 2 {\displaystyle \triangle H_{1,2}=\triangle n_{1,2}+E_{1,2}}
E 1 , 2 = ∫ 1 2 g − γ 0 45 γ 0 45 d n + g 1 ¯ − γ 0 45 γ 0 45 H 1 − g 2 ¯ − γ 0 45 γ 0 45 H 2 {\displaystyle E_{1,2}=\int _{1}^{2}{\frac {g-\gamma _{0}^{45}}{\gamma _{0}^{45}}}\,dn+{\frac {{\bar {g_{1}}}-\gamma _{0}^{45}}{\gamma _{0}^{45}}}H_{1}-{\frac {{\bar {g_{2}}}-\gamma _{0}^{45}}{\gamma _{0}^{45}}}H_{2}}
E 1 , 2 N = ∫ 1 2 g − γ 0 45 γ 0 45 d n + γ 1 ¯ − γ 0 45 γ 0 45 H 1 N − γ 2 ¯ − γ 0 45 γ 0 45 H 2 N {\displaystyle E_{1,2}^{N}=\int _{1}^{2}{\frac {g-\gamma _{0}^{45}}{\gamma _{0}^{45}}}\,dn+{\frac {{\bar {\gamma _{1}}}-\gamma _{0}^{45}}{\gamma _{0}^{45}}}H_{1}^{N}-{\frac {{\bar {\gamma _{2}}}-\gamma _{0}^{45}}{\gamma _{0}^{45}}}H_{2}^{N}}
γ ¯ = γ 0 ( 1 − H N R ) {\displaystyle {\bar {\gamma }}=\gamma _{0}(1-{\frac {H^{N}}{R}})}
g ′ = g − ∫ H ′ H ∂ g ∂ H d H {\displaystyle g'=g-\int _{H'}^{H}{\frac {\partial g}{\partial H}}\,dH}
g ′ = g + 0.848 × 10 − 6 ( H − H ′ ) m s − 2 {\displaystyle g'=g+0.848\times 10^{-6}(H-H')ms^{-2}}
g ¯ = g + 0.424 × 10 − 6 H m s − 2 {\displaystyle {\bar {g}}=g+0.424\times 10^{-6}Hms^{-2}}
ζ = z ′ + ∂ + ϵ = z + ϵ {\displaystyle \zeta =z'+\partial +\epsilon =z+\epsilon }
△ h 1 , 2 = h 2 − h 1 = S ( 1 + h m R ) c o t ζ 1 + S 2 2 R s i n 2 ζ 1 {\displaystyle \triangle h_{1,2}=h_{2}-h_{1}=S(1+{\frac {h_{m}}{R}})cot\zeta _{1}+{\frac {S^{2}}{2Rsin^{2}\zeta _{1}}}}
ψ = S R = ζ 1 + ζ 2 − π {\displaystyle \psi ={\frac {S}{R}}=\zeta _{1}+\zeta _{2}-\pi }
△ h 1 , 2 = S ( 1 + h m R + S 2 12 R 2 ) t a n 1 2 ( ( z 2 ′ + ∂ 2 + ϵ 2 ) − ( z 1 ′ + ∂ 1 + ϵ 1 ) ) {\displaystyle \triangle h_{1,2}=S(1+{\frac {h_{m}}{R}}+{\frac {S^{2}}{12R^{2}}})tan{\frac {1}{2}}((z'_{2}+\partial _{2}+\epsilon _{2})-(z'_{1}+\partial _{1}+\epsilon _{1}))}
k = 1 − R S ( z 1 ′ + z 2 ′ − π ) {\displaystyle k=1-{\frac {R}{S}}(z'_{1}+z'_{2}-\pi )}