Winkel
Vorlage:Physikalische Größe Ein Winkel ist ein Objekt der Geometrie, das aus zwei in einer Ebene liegenden Strahlen (Halbgeraden) mit gemeinsamem Anfangspunkt besteht.
Der gemeinsame Anfangspunkt der beiden Strahlen wird Scheitelpunkt des Winkels, Winkelscheitel oder kurz Scheitel genannt; die Strahlen heißen Schenkel des Winkels. Ein Winkel kann durch drei Punkte festgelegt werden, von denen einer im Scheitel des Winkels liegt und die beiden anderen auf je einem Schenkel des Winkels.
Die Größe, die die relative Lage der Strahlen zueinander beschreibt, wird als Winkelweite bezeichnet, üblicherweise auch verkürzend als „Winkel“, wenn eine Unterscheidung von dem geometrischen Objekt nicht notwendig ist.
Zur Unterscheidung vom Raumwinkel wird der hier definierte Winkel auch als ebener Winkel oder Drehwinkel bezeichnet.
Ausgezeichnete Winkel sind der Vollwinkel (Vollkreis) und der rechte Winkel. Einheiten der Winkelweite sind die SI-Einheit Radiant, das Grad, der Vollwinkel und andere.
Darstellung als Drehung
Man kann auch sagen, ein Winkel entsteht durch eine Drehung eines Strahls in einer Ebene um seinen Anfangspunkt.
Da es zwei verschiedene Möglichkeiten gibt, den Strahl zu drehen, sollte zusätzlich die Drehrichtung angeben werden:
- Linksdrehung, gegen den Uhrzeigersinn, auch mathematisch positiver Drehsinn genannt.
- Rechtsdrehung, mit dem Uhrzeigersinn, auch mathematisch negativer Drehsinn genannt.
In der Mathematik ist es üblich, die Drehung gegen den Uhrzeigersinn – also im math. positiven Drehsinn – auszuführen. Wenn die Drehung andersherum erfolgen soll, sollte dieses ausdrücklich angegeben werden.
Winkel werden meistens mit kleinen griechischen Buchstaben, z. B. α oder β, bezeichnet.
Alternativ kann man die drei Punkte angeben, die den Winkel definieren, wobei der Scheitelpunkt immer in der Mitte steht, z.B. Winkel ABC oder .
Dies bezeichnet den Winkel zwischen |BA| und |BC|, wobei |BA| im mathematisch positiven Drehsinn auf |BC| gedreht wird.
Winkelmaße und Maßeinheiten für Winkel
Ausführliche Informationen bietet der Hauptartikel Winkelmaß, Umrechnungen sind bei den einzelnen Maßen zu finden.
Winkelmaß | Maßeinheit | 1 Vollwinkel = | Einheitenzeichen |
---|---|---|---|
- | Vollwinkel | 1 | |
Bogenmaß | Radiant | 2π | rad |
Gradmaß | Grad (Bogenminute, Bogensekunde) | 360 | ° ( ′ ″ ) |
Geodätisches Winkelmaß | Gon (veraltet: Neugrad) | 400 | gon |
Zeitmaß | Stunden, Minuten, Sekunden | 24 | h ′ ″ |
- | Nautischer Strich | 32 | ¯ |
- | Artilleristischer Strich (Schweiz: Artilleriepromille) | 6400 | mil ( A‰ ) |
- | Prozent, Promille | nichtlinear | %, ‰ |
Weitere Formen der Angabe eines Winkels:
- Der Tangens der Winkelweite des Steigungswinkels (auch Steigungsmaß genannt, entspricht der Maßangabe in Prozent)
- Ein Tupel (x, y) mit Cosinus und Sinus (entspricht den kartesischen Koordinaten des Punktes auf dem Einheitskreis)
Arten von Winkeln
- spitzer Winkel
- kleiner ¼ Vollwinkel: (0°, 90°) = (0g, 100g) = (0, ½·π);
- rechter Winkel
- gleich ¼ Vollwinkel: 90° = 100g = ½·π;
- stumpfer Winkel
- größer ¼ und kleiner ½ Vollwinkel: (90°, 180°) = (100g, 200g) = (½·π, π);
- gestreckter Winkel
- gleich ½ Vollwinkel: 180° = 200g = π;
- überstumpfer Winkel
- größer ½ und kleiner 1 Vollwinkel: (180°, 360°) = (200g, 400g) = (π, 2·π);
Vollwinkel und Rechter Winkel

- Einen 360°-Winkel nennt man auch Vollwinkel oder Vollkreis.
- Einen 90°-Winkel nennt man auch rechter Winkel.
Zwischen zwei sich schneidenden Geraden gibt es vier Winkel. Jeweils zwei nebeneinander liegende summieren sich dabei zu 180°. Der rechte Winkel hat die Besonderheit, dass diese beiden Winkel genau gleich sind. Jeweils zwei gegenüberliegende Winkel sind gleich. Der Vollwinkel hat hat die Besonderheit, das 2 der Winkel Null sind.
Zwei Geraden oder Strecken, die sich im rechten Winkel schneiden, nennt man zueinander orthogonal.
In einer Zeichnung wird der rechte Winkel durch einen Viertelkreis mit Punkt oder durch ein Quadrat dargestellt. Der Vollwinkel ist eine gesetzliche Einheit im Messwesen.
Spezielle Winkelpaare
Die Geometrie kennt besondere Bezeichnungen für Paare von Winkeln, die zueinander in einer besonderen Beziehung stehen. Die für solche Winkel geltenden Gesetze helfen bei der Untersuchung komplexerer geometrischer Objekte.
![]() |
![]() |
Komplementwinkel oder Komplementärwinkel
Zwei Winkel heißen Komplementwinkel, wenn sie sich zu einem rechten Winkel (90°) ergänzen.
Supplementwinkel oder Ergänzungswinkel
Zwei Winkel heißen Supplementwinkel, wenn sie sich zu 180° ergänzen.
![]() |
![]() |
Scheitelwinkel oder Gegenwinkel
Schneiden sich zwei Geraden, so bezeichnet man das Paar gegenüberliegender Winkel als Scheitelwinkel oder Gegenwinkel.
- Scheitelwinkel sind immer gleich groß.
Die Bezeichnung Scheitelwinkel kommt daher, dass die beiden Winkel durch Punktspiegelung am Scheitelpunkt aufeinander abgebildet werden.
Nebenwinkel
Schneiden sich zwei Geraden, so bezeichnet man ein Paar benachbarter Winkel als Nebenwinkel.
- Nebenwinkel ergänzen sich zu 180°. Sie sind also Supplementwinkel.
![]() |
Nachbarwinkel oder E-Winkel
Schneidet eine Gerade zwei weitere parallele Geraden und , so bezeichnet man die Winkel und , die auf der selben Seite von aber auf unterschiedlichen Seiten von und liegen, als Nachbar- oder E-Winkel.
- Nachbarwinkel ergänzen sich zu 180°.
Aus der Ergänzung der Winkel zu 180° kann umgekehrt auf die Parallelität von Geraden geschlossen werden: Wird ein Geradenpaar , von einer weiteren Geraden so geschnitten, dass sich die Schnittwinkel und , die auf der selben Seite von aber jeweils auf unterschiedlichen Seiten von und liegen, zu 180° ergänzen, so sind die Geraden und parallel.
Die Eigenschaft, dass sich Nachbarwinkel zu 180° ergänzen, folgt direkt aus dem Parallelenaxiom der euklidischen Geometrie. Die folgenden Eigenschaften von Stufen- und Wechselwinkeln lassen sich aus der Betrachtung von Neben- und Scheitelwinkeln von Nachbarwinkeln herleiten.
![]() |
Stufenwinkel oder F-Winkel
Schneidet eine Gerade zwei Geraden und , so heißen die Winkel und , die auf der selben Seite von und beide entweder ober- oder unterhalb von bzw. liegen, Stufen- oder F-Winkel. Für den Fall der Parallelität der Geraden und gilt:
Stufenwinkel an Parallelen sind gleich groß.
Aus der Winkelgleichheit kann umgekehrt auf die Parallelität von Geraden geschlossen werden: Wird ein Geradenpaar , von einer weiteren Geraden so geschnitten, dass die Schnittwinkel auf der selben Seite von und jeweils ober- oder unterhalb von und gleich groß sind, so sind die Geraden und parallel.
![]() |
Wechselwinkel oder Z-Winkel
Schneidet eine Gerade zwei Geraden und , so heißen die Winkel und , die auf unterschiedlichen Seiten von und unterschiedlichen Seiten von bzw. liegen, Wechsel- oder Z-Winkel. Für den Fall der Parallelität der Geraden und gilt:
Wechselwinkel an Parallelen sind gleich groß.
Aus der Winkelgleichheit kann umgekehrt auf die Parallelität von Geraden geschlossen werden: Wird ein Geradenpaar , von einer weiteren Geraden so geschnitten, dass die Schnittwinkel auf unterschiedlichen Seiten von und unterschiedlichen Seiten von bzw. gleich groß sind, so sind die Geraden und parallel.
![]() |
![]() |
Winkel mit paarweise rechtwinkligen Schenkeln
Winkel, deren Schenkel paarweise senkrecht aufeinander stehen, sind entweder gleich groß a), oder ergänzen sich zu 180° b). Vergleiche nebenstehende Abbildungen.
Winkelkonstruktion
Einige Winkel kann man allein mit Zirkel und Lineal konstruieren. Dazu gehören der 90 Grad-, 60 Grad-, 72 Grad- und 54 Grad-Winkel, sowie sämtliche Winkel, die durch Verdoppelung, Halbierung, Addition oder Subtraktion (siehe unten) dieser Winkel entstehen.
Die Aussage, jeder Winkel kann allein mit Hilfe von Zirkel und Lineal gedrittelt werden, gilt im Allgemeinen nicht!
Konstruktion des 60-Grad-Winkels (rechten Winkels)
Man konstruiert genauer gesagt die Senkrechte zu einer bereits gegebenen Strecke.
- Konstruktion
- Zeichne eine Gerade g. Wähle einen Punkt P auf g. Zeichne einen Kreis um P mit beliebigem Radius r. Dieser Kreis schneidet g in zwei Punkten, bspw. A und B. Zeichne um diese beiden Punkte jeweils einen Kreis mit einem Radius größer als r. Verbinde die beiden Schnittpunkte dieser Kreise und verlängere sie in beide Richtungen. Die entstandene Gerade schneidet g im rechten Winkel und zwar genau im Punkt P.
- Ratschlag
- Man braucht die Kreise nicht ganz zu schlagen; Es reicht jeweils einen Bogenabschnitt zu ziehen, auf dem der Schnittpunkt liegt. Die Schnittpunkte liegen genau über (bzw. unter) dem Scheitelpunkt in senkrechter Verbindung zur gegebenen Strecke.
- Daumenregel fürs Zeichnen
- Je größer die Radien der Kreise, desto genauer wird der rechte Winkel.
Folgerung (Streckenhalbierung, Mittelsenkrechte)
Man halbiert eine gegebene Strecke, in dem man Kreise, deren Radius größer ist als die Hälfte der Strecke, um die Endpunkte dieser Strecke zieht. Verbindet man nun die Schnittpunkte, die beide Kreise miteinander haben, so schneidet diese Verbindungslinie die Gerade genau in der Mitte und im rechten Winkel. Infolgedessen wurde eine Mittelsenkrechte konstruiert.
Konstruktion eines 60-Grad-Winkels
Man konstruiert um den Scheitelpunkt auf einer gegebenen Strecke einen Kreis und trägt ausgehend vom Schnittpunkt zwischen Kreis und Strecke einmal den Radius des Kreises auf dem Kreis selbst ab. Die Verbindung zwischen Scheitelpunkt und dem so konstruierten Schnittpunkt schließt mit der gegebenen Gerade einen 60 Grad Winkel ein.
- Konstruktion
- Man nehme einen beliebigen Abstand in den Zirkel, steche im Scheitelpunkt ein und schlage einen Kreis. Den Abstand behalte man im Zirkel und steche dann im Schnittpunkt zwischen Kreis und gegebener Gerade ein und zeichne einen weiteren Schnittpunkt mit dem Kreis.
Man verbinde diesen Schnittpunkt und den Scheitelpunkt durch eine Linie mittels Lineal.
Folgerung (Konstruktion gleichseitige Dreiecke)
Verbindet man zusätzlich den im ersten Schritt konstruierten Schnittpunkt auf der gegebenen Strecke mit dem zuletzt konstruierten Schnittpunkt, so erhält man ein gleichseitiges Dreieck. Dieses hat folglich drei gleichgroße Winkel von je 60 Grad.
Muss man also ein gleichseitiges Dreieck aus gegebener Seitengröße konstruieren, so zeichne man eine Linie, nehme die Seitengröße in den Zirkel, und schlage um einen beliebigen Punkt auf der Linie einen Kreis. Man sticht auf dem Schnittpunkt zwischen Kreis und Linie ein und trägt so die Seitenlänge auf dem Kreis selbst ab. Nun verbinde man den zuletzt konstruierten Punkt mit beiden Einstichpunkten.
Folgerung (Konstruktion von Sechsecken
Trägt man auf einem beliebigen Kreis den Radius, den der Kreis selbst hat, mit dem Zirkel ab, so erhält man, wenn man alle auf dem Kreis nebeneinanderliegenden Schnittpunkte durch eine Gerade verbindet, ein regelmäßiges Sechseck (Hexagon)).
Dieses liegt daran, dass wenn man den Kreismittelpunkt mit den Ecken des Sechsecks verbindet jeweils 6 gleichseitige Dreiecke erhält, deren Winkel am Kreismittelpunkt jeweils 60 Grad betragen. 6x60 Grad = 360 Grad, also ein Kreis gleichschenkliger Dreiecke, deren Besonderheit ist, auch noch gleichseitig zu sein.
Konstruktion eines 72- oder 54-Grad-Winkels
Für die etwas exotischere Konstruktion des 72°- oder des 54°-Winkels konstruiert man ein regelmäßiges Fünfeck.
Addition und Subtraktion von Winkeln
Jeder Winkel lässt sich zu einem anderen Winkel konstruktiv addieren. Hierfür sticht man in den Punkt beim zu addierenden Winkel ein und schlägt einen Bogen, so dass er die Schenkel des Winkels schneidet. Der Radius des Bogens muss im Zirkel behalten werden; man schlägt nun einen Kreis (oder je nach Winkelgröße auch nur einen abzuschätzenden Bogen) um den Punkt bei dem Winkel, zu dem man addieren möchte, so dass dieser einen Schenkel ebendieses Winkels schneidet. Daraufhin sticht man in den Schnittpunkt des Bogens mit einem der Schenkel des zu addierenden Winkels ein und spannt diesen bis zum anderen Schenkel. Dieser Abstand wird wieder beibehalten, man schlägt nun einen Kreis um den Schnittpunkt des Bogens mit dem Schenkel des Winkels, zu dem man addieren möchte. Der Schnittpunkt der beiden Bögen wird mit dem Punkt beim Winkel, zu dem man addieren möchte, verbunden, und erhält so die Summe der beiden Ausgangswinkel.
Ebenso verhält es sich mit der Subtraktion eines Winkels, nur dass hierbei der Winkel eben nicht an den Winkel zusätzlich angetragen wird, sondern so, dass der neue Schenkel zwischen die Ausgangsschenkel des Winkels, von dem man subtrahieren möchte, liegt.
Winkelhalbierung
Ein Winkel besteht stets aus zwei Schenkeln, die sich im Scheitelpunkt treffen. Zieht man nun zwei gleichgroße Kreise auf je einem Schenkel durch den Scheitelpunkt, so bildet die Strecke zwischen den Kreisschnittpunkten die Winkelhalbierende. Jeder Punkt auf der Winkelhalbierenden ist gleich weit von den Schenkeln entfernt.
- Konstruktion
- Man nehme einen Abstand in den Zirkel und steche am Scheitelpunkt ein. Man zeichne so die Schnittpunkte mit den beiden Schenkeln ein. Nun behält man den Abstand im Zirkel, sticht an je einem der Schnittpunkte ein und schlägt um sie je einen Kreis. Man verbinde beide Schnittpunkte durch eine Linie mit dem Lineal und erhält so die Winkelhalbierende.
Folgerung (allgemeine Winkelkonstruktionen)
Konstruiert man die obigen Winkel (90°, 60°, 72° oder 54° oder deren Summen bzw. Differenzen), so lassen sich aus diesen per Winkelhalbierung weitere Winkel (45°, 30°, 36° und 27° oder den zugehörigen Summen bzw. Differenzen) konstruieren, die und deren Abkömmlinge sich wieder halbieren lassen. Generell lassen sich alle ganzzahligen Winkel konstruieren, die ein Vielfaches von 3° sind.
Winkelmessung
- mit dem Geodreieck
- mit dem Theodolit
- mit dem Goniometer
- mit dem Sextanten
- historisch
- mit dem Jakobsstab
Siehe auch: Peilung
Trivia
In der Architektur und im Design dominieren seit Beginn der Zivilisationsgeschichte rechte Winkel über alle anderen Winkel, gefolgt von den ganzen Vielfachen des 60°-Winkels (Sechseck-Waben). Alle anderen Winkel gelten immer noch als exotisch.