Zum Inhalt springen

Siebtheorie

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 7. August 2022 um 14:02 Uhr durch Tensorproduct (Diskussion | Beiträge) (Refernzfix). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Die Siebtheorie bezeichnet eine Reihe von Techniken aus der analytischen Zahlentheorie. Die Grundidee ist mittels einem mathematischen Sieb eine Grundmenge zu filtern, so dass am Ende eine gewünschte gesiebte Menge übrig bleibt, die nicht durch das Sieb geflogen ist. Dies können zum Beispiel Primzahlen, Primzahlzwillinge oder Fastprimzahlen sein. Der Archetyp eines Siebes ist das Sieb des Eratosthenes zum Berechnen der Primzahlen. In erster Linie ist man an der Kardinalität der gesiebten Menge interessiert.

Die Siebtheorie hat sich zu einem mächtigen Instrument der analytischen Zahlentheorie entwickelt, die viele bedeutende mathematische Aussagen ermöglicht hat, darunter der Satz von Chen und Yitang Zhangs Resultat über die Anzahl Primzahlpaare. Sie lässt sich aber auch auf andere mathematische Gebiete übertragen.

Siebmethoden haben aber auch Grenzen, so verhindert das sogenannte Partiätsproblem das Finden von nicht-trivialen unteren Schranken für die Primzahlzählfunktion. Klassische Siebmethoden können nicht zwischen Zahlen mit einer geraden und solchen mit einer ungeraden Anzahl von Primfaktoren unterscheiden, diese Eigenschaft nennt man das Partiätsproblem.[1]

Geschichte

Viggo Brun

Das erste bekannte Sieb ist das antike Sieb des Eratosthenes zum Berechnen der Primzahlen. Das Sieb kann als Anwendung des Prinzips der Inklusion und Exklusion aus der Kombinatorik interpretiert werden und für die Berechnung der Primzahlfunktion benützt werden. Eine erste Verallgemeinerung des Siebs von Eratosthenes stammt von Adrien-Marie Legendre. Obwohl der Algorithmus sehr intuitiv ist, ist es nicht ganz einfach das Konzept zu abstrahieren, deshalb entstand die moderne Siebtheorie erst Anfangs des 20. Jahrhunderts.

Der abstrakte Begriff des Siebs entstand mit der 1915 erschienen Publikation des norwegischen Mathematikers Viggo Brun.[2] Bruns Arbeit war inspiriert durch die Arbeiten des Franzosen Jean Merlin, dieser verstarb aber im ersten Weltkrieg und nur zwei seiner Manuskripte haben überlebt.[3] Als endgültiger Start der modernen Siebtheorie gilt Bruns 1919 veröffentlichte Publikation, in der er bewies, dass die Summe der reziproken Werte der Primzahlzwillinge konvergiert[4]

Die Konstante zu der diese Summe konvergiert, nennt man Bruns Konstante. Das Brun-Sieb ist ein kombinatorisches Sieb, welches auf der Idee eines gewichteten Prinzip der Inklusion und Exklusion basiert. In seiner simpelsten Form bezeichnet man es auch als Bruns reines Sieb.

1934 erschien ein einfaches Sieb von Pál Turán, welches Turán-Sieb genannt wird.

1941 erschien das große Sieb von Juri Linnik, welcher probabilistische Methoden einführte. Linniks Ideen stellten sich als äußerst fruchtbar heraus und sukzessiv wurde das Sieb von vielen Mathematikern weiterentwickelt (darunter Rényi, Roth, Bombieri, Halberstam, Gallagher uvw.). Diese heutige Form befasst sich mit einem viel größeren Kontext als Linniks ursprüngliche Arbeit. Das große Sieb kann von der großen Sieb-Ungleichung abgeleitet werden.[5]

1947 erschien ein weiteres wichtiges Sieb von Atle Selberg genannt Selberg-Sieb. Selberg nützte dabei Bruns Ansatz und gab eine simple Folge von Gewichten an.[6]

In den 1970ern erschien das asymptotische Sieb von Bombieri. Mitte der 1990er veröffentlichten John Friedlander und Henryk Iwaniec partitätsempfindliche Siebe, welche das sogenannte Partiätsproblem in manchen Fällen löst. Dies bezeichnet die Eigenschaft, dass die Siebtheorie im allgemeinen nicht zwischen Zahlen mit einer geraden und einer ungeraden Anzahl von Primfaktoren in einer Menge unterscheiden kann. Dies hat zur Folge, dass es äußerst schwierig ist, nicht-triviale untere Schranken für Primzahlmengen zu finden.

Siebtheorie

Notation:

Wir folgen dem Ansatz aus Opera de Cribro von Friedlander und Iwaniec.[7] Wir bezeichnen mit

  • die Menge der Primzahlen.
  • die Indikatorfunktion einer Menge .
  • die Kardinalität einer Kongruenzmenge (in der Literatur wird diese auch mit notiert).
  • den größten gemeinsamen Teiler .
  • die Abrundungsfunktion.
  • den Nachkommateil, das heißt .

Grundidee

Sei eine beliebige endliche Grundmenge bis zur Zahl genannt Siebmenge (englisch sieving set). Die Restriktion bis muss nicht sein, ist aber üblich. Angenommen, wir möchten nun alle Primzahlen in finden, die sich nicht in einer vorgegebenen Primzahlmenge befinden.

Wenden wir das Sieb des Eratosthenes an, dann entfernen wir von in einem ersten Schritt alle Vielfachheiten von , das heißt die Menge

danach sukzessiv für jedes alle anderen Mengen der Form

und die resultierende Menge ist die gesiebte Menge (englisch sieved set)

bestehend aus den zu teilerfremden Zahlen

Für definiert man aus Notationsgründen üblicherweise folgende Funktion

Das Siebproblem

Die Kardinalität der Menge bezeichnet man als Siebfunktion (englisch sieve function):

Die Siebfunktion zählt somit alle Element in der Menge , die nicht durch die Elemente teilbar sind.

Häufig kann man nicht explizit berechnen, deshalb versucht man eine obere und untere Schranken zu finden. Das Abschätzen der Siebfunktion nennt man Siebproblem.

Beispiel

Sei

dann zählt alle Elemente in , welche nicht durch die Primzahlen bis teilbar sind.

Die Indikatorfunktion

Da wir im Wesentlichen an der Evaluation einer Summe der Form

interessiert sind, ist es natürlich den Zählfaktor als abstrakte Folge zu betrachten. Dafür führen wir die charakteristische Funktion von ein

und notieren die zugehörige Folge mit . Dieser Abstraktionsschritt hat den Vorteil, das man später auch allgemeine Folgen wählen kann (zum Beispiel komplex-wertige). Zusätzlich definieren wir folgende Teilfolgen von

Für die Siebfunktion gilt

Die charakteristische Funktion von lässt sich durch die Möbiusfunktion schreiben

Identitäten für die Siebfunktion

Sei eine endliche Folge von nicht-negativen reellen Zahlen, eine allgemeine Menge von Primzahlen und .

Für die Siebfunktion gilt

deshalb führen wir die Kongruenzsumme ein

Die Kongruenzsumme ist die Masse aller Vielfachheiten von . In der Regel betrachtet man nur für quadratfreie Zahlen .[7]

Legendres Identität

Wir haben somit folgende Identität für die Siebfunktion hergeleitet

welche auch Legendres Identität genannt wird. Die Möbiusfunktion ist für alle Primzahlen negativ.

Beispiel

Sei und , dann gilt

Approximation der Kongruenzsumme

Wir nehmen an, wir können die Kongruenzsumme aufteilen

wobei eine Approximation der gesammten Masse ist

Die Funktion kann als Wahrscheinlichkeit interpretiert werden und wird deshalb Dichtefunktion genannt. Wir setzen voraus das eine multiplikative Funktion ist und folgendes gilt

Die Funktion bezeichnet einen Restterm, den man möglichst klein halten möchte.

Die Siebfunktion lässt sich nun als

schreiben, was oft abgekürzt wird mit

Identität für die Möbiusfunktion und eine multiplikative Funktion

Sei eine multiplikative Funktion mit , dann gilt für alle

Zusammengefasst

Die Ausgangslage einer Siebmethode lässt sich grob wie folgt zusammenfassen:[7]

und eine Siebfunktion

Beispiele

Das Sieb von Eratosthenes-Legendre

Wir betrachten das Sieb von Eratostehenes. Sei , und sowie[8]

sowie

Die Siebfunktion ist somit

mit

Wählt man , so erhält man gerade alle Primzahlen im Interval und somit

Für gilt

wobei wir in der letzten Gleichung den Satz von Mertens mit Restterm verwendet haben. Für den Restterm nützen wir die Abschätzung

Wir kriegen folgende Abschätzung

Wir können den Restterm verbessern, wenn wir wählen, denn dann gilt

und wir erhalten

Daraus folgern wir

was aber ein schlechteres Resultat als der Primzahlsatz ist.

Bruns reines Sieb

Bruns Idee beruht auf der Beobachtung, dass das Sieb von Eratosthenes-Legendre betrachtet als das Prinzip der Inklusion und Exklusion jeweils für jede Partialsumme abwechselnd über- und unterzählt. Seine Idee war es deshalb, die Partialsummen zu gewichten in dem er die Möbiusfunktion durch eine passende Folge auf einem kleinerem Träger ersetzt

hierzu wählte er die Menge , wobei die Prim-Omega-Funktion bezeichnet, welche die distinkten Primfaktoren zählt.

Sei die Länge der nicht-null Folge von , dann sagt man ist eine Sieb mit Niveau (englisch sieve of level D).

Die nennt man Sieb-Gewichte (oder siebende Gewichte) und die neue Siebfunktion wird mit notiert. Allgemein ist diese nun nicht mehr gleich groß wie die ursprüngliche Siebfunktion.

Wählt man zwei verschiedene Folgen und mit der Eigenschaft

dann erhält man ein unteres und oberes Schrankensieb

Häufig notiert man diese Schranken auch nur mit und . Diese Ungleichung ist die einfachste Form der Methode von Brun und sie trägt daher den Namen Bruns reines Sieb.[9]

Anwendung: Primzahlzwillinge

Sei , , , und . Weiter sei

dann ist für

Für den Restterm gilt

Es lässt sich mit Hilfe von Bruns purem Sieb folgende Ungleichung für die Primzahlzwillinge herleiten:

woraus Bruns Theorem über die Primzahlzwillinge folgt.[9]

Literatur

  • John Friedlander und Henryk Iwaniec: Opera de Cribro. In: American Mathematical Society (Hrsg.): American Mathematical Society Colloquium Publications. Band 57, 2010, ISBN 978-0-8218-4970-5.
  • Alina Carmen Cojocaru und M. Ram Murty: An Introduction to Sieve Methods and Their Applications. Hrsg.: Cambridge University Press. 2005, doi:10.1017/CBO9780511615993 (englisch).
  • Heini Halberstam und Hans Egon-Richert: Sieve Methods. Hrsg.: Dover Publications Inc. ISBN 978-0-486-47939-2 (englisch).

Einzelnachweise

  1. Kevin Ford: On Bombieri's asymptotic sieve. Hrsg.: arXiv. 2004, doi:10.48550/ARXIV.MATH/0401215, arxiv:math/0401215.
  2. Viggo Brun: Über das Goldbachsche Gesetz und die Anzahl der Primzahlpaare. In: Archiv for Math. Naturvidenskab. Band 34, 1915.
  3. Alina Carmen Cojocaru und M. Ram Murty: An Introduction to Sieve Methods and Their Applications. Hrsg.: Cambridge University Press. 2005, doi:10.1017/CBO9780511615993 (englisch).
  4. Viggo Brun: La série 1/5+1/7+1/11+1/13+1/17+1/19+1/29+1/31+1/41+1/43+1/59+1/61+..., où les dénominateurs sont nombres premiers jumeaux est convergente ou finie. In: Bulletin des Sciences Mathématiques. Band 43, 1919, S. 100–104, 124–128 (französisch, bnf.fr).
  5. John Friedlander und Henryk Iwaniec: Opera de Cribro. In: American Mathematical Society (Hrsg.): American Mathematical Society Colloquium Publications. Band 57, 2010, ISBN 978-0-8218-4970-5, S. 151.
  6. Atle Selberg: On an elementary method in the theory of primes. In: Norsk. Vid. Selsk. Forh. Band 19, Nr. 18, 1947, S. 64–67.
  7. a b c John Friedlander und Henryk Iwaniec: Opera de Cribro. In: American Mathematical Society (Hrsg.): American Mathematical Society Colloquium Publications. Band 57, 2010, ISBN 978-0-8218-4970-5.
  8. John Friedlander und Henryk Iwaniec: Opera de Cribro. In: American Mathematical Society (Hrsg.): American Mathematical Society Colloquium Publications. Band 57, 2010, ISBN 978-0-8218-4970-5, S. 5;31–33.
  9. a b John Friedlander und Henryk Iwaniec: Opera de Cribro. In: American Mathematical Society (Hrsg.): American Mathematical Society Colloquium Publications. Band 57, 2010, ISBN 978-0-8218-4970-5, S. 6;55–56.