Zum Inhalt springen

Eiszeitalter

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 13. Juli 2019 um 09:37 Uhr durch Berossos (Diskussion | Beiträge) (Hauptursachen des Paläoproterozoischen Eiszeitalters: typos). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Die Klimageschichte der Erde. Die Buchstaben „E“ zeigen die Eiszeitalter an.

Ein Eiszeitalter, umgangssprachlich oft Eiszeit genannt, ist ein Abschnitt der Erdgeschichte, in dem mindestens eine Polregion der Erde vergletschert beziehungsweise von einem Eisschild bedeckt ist.[1] Nach einer anderen, enger gefassten und weniger gebräuchlichen Definition wird der Begriff Eiszeitalter erst dann verwendet, wenn sowohl auf der Nordhalbkugel als auch auf der südlichen Hemisphäre ausgedehnte Vergletscherungen auftreten.[2]

Nach der ersten Definition befindet sich die Erde seit rund 34 Millionen Jahren im Känozoischen Eiszeitalter, da seit dieser Zeit die Antarktis vergletschert ist. Nach der zweiten Definition begann das derzeitige Eiszeitalter erst vor etwa 2,7 Millionen Jahren, als auch die Arktis vergletscherte. Es entspricht damit von seiner Dauer annähernd dem geologischen Zeitabschnitt des Quartärs.

Bisher sind aus der Erdgeschichte sechs Eiszeitalter bekannt, von denen jedes mehrere Millionen Jahre umfasst. Dazwischen liegen unterschiedlich lange Zeiträume mit mehr oder minder stark ausgeprägten Warmklima-Phasen.

Eiszeit und Eiszeitalter

Der Begriff Eiszeit (im damaligen Sprachgebrauch auch Weltwinter) wurde 1837 von Karl Friedrich Schimper eingeführt,[3] der sich dabei zunächst auf das gesamte Quartär bezog. Nach der Entdeckung des Wechsels mehrerer aufeinanderfolgender Warm- und Kaltzeiten wurde das Wort einerseits weiterhin für das Eiszeitalter als Ganzes verwendet, andererseits auch als Bezeichnung für die einzelnen Kaltzeiten (Glaziale).

Ein Eiszeitalter umfasst sowohl die Kaltzeiten als auch die dazwischenliegenden Warmzeiten (Interglaziale). Das jüngste, bis in die Gegenwart reichende Känozoische Eiszeitalter begann vor rund 34 Millionen Jahren mit der Vereisung der antarktischen Regionen und umfasst neben den Serien Oligozän, Miozän und Pliozän auch das Quartär, während die letzte Kaltzeit (im Alpenraum Würm-Kaltzeit, in Norddeutschland/Nordeuropa Weichsel-Kaltzeit) vor etwa 11.700 Jahren zu Ende ging. Da das Holozän lediglich eine Warmzeit innerhalb des Känozoischen Eiszeitalters ist, werden weitere Kaltzeitzyklen unter den Bedingungen des derzeitigen Klimazustands wahrscheinlich auch in der Zukunft auftreten. Der seit dem Klimaoptimum des Holozäns herrschende Abkühlungstrend von ca. 0,12 °C pro Jahrtausend gilt als Vorbote einer erneuten Kaltzeit,[4] die jedoch im Rahmen natürlicher Klimaveränderungen erst in 30.000 bis 50.000 Jahren erwartet wird.[5]

 Klima 
 Warmklima (Erdpole unvergletschert) 

 Eiszeitalter (Erdpole vergletschert) 
 Warmzeit (Interglazial) 

Interstadial (?)


   

Stadial



 Kaltzeit (Glazial) 

Interstadial


   

Stadial



Vorlage:Klade/Wartung/Breite

Vorlage:Klade/Wartung/Breite

Vorlage:Klade/Wartung/Breite

Die Eiszeitalter der Erdgeschichte im Überblick

Eiszeitalter traten im Lauf der Erdgeschichte mehrfach auf. Die Erde ist, betrachtet man ihre gesamte Geschichte, ein weitgehend eisfreier Planet, auf dem es jedoch in Abständen Kältephasen gab. Während dieser Phasen kam es zur Eisbedeckung an den Polen und in den Gebirgen sowie in Europa und Nordamerika während der letzten Kaltzeiten zu Gletschervorstößen bis in mittlere Breiten.

Die frühesten Vereisungsphasen gab es im älteren Präkambrium vor etwa 2,2 Milliarden Jahren und an seinem Ende vor etwa 750 bis 600 Millionen Jahren (Cryogenium). Nach der „Schneeball Erde“-Hypothese war die Erde während der jüngeren dieser beiden Perioden mehrmals fast komplett von Eis bedeckt.[6] Die Entwicklung des Lebens wurde durch die großflächige Vergletscherung stark gefährdet. Eventuell wurde aber die Evolution der Vielzeller, die kurz nach dem Ende dieser Vereisung einsetzte, deutlich beschleunigt. Klimamodelle der frühen Erde unterstützen diese Hypothese; sie ist allerdings weiterhin umstritten.[7]

Weitere Vereisungen sind aus dem Ordovizium und Silur (Anden-Sahara- bzw. Hirnantische Vereisung) sowie dem permo-karbonischen Eiszeitalter bekannt. Vor allem der südlich des Äquators liegende Großkontinent Gondwana wurde von den Eisvorstößen dieser Epochen überprägt. Mitteleuropa befand sich zu dieser Zeit in Äquatornähe und besaß ein tropisches Klima. Die Verteilung der Ablagerungen dieser Eiszeitalter auf verschiedenen Kontinentalplatten war eines der Argumente für Alfred Wegeners Kontinentaldrift-Hypothese.[8]

Name Beginn vor Mio. Jahren Dauer in Mio. Jahren Äon Ära Periode
Paläoproterozoische Vereisung 2.400 300 Proterozoikum Paläoproterozoikum Siderium, Rhyacium
Sturtische Eiszeit 717 57 Proterozoikum Neoproterozoikum Cryogenium
Marinoische Eiszeit 640 5 Proterozoikum Neoproterozoikum Cryogenium
Anden-Sahara-Eiszeit /
auch Hirnantische Eiszeit
460 30 Phanerozoikum Paläozoikum Ordovizium, Silur
Permokarbones Eiszeitalter /
auch Karoo-Eiszeit
360/350 80 bis 100 Phanerozoikum Paläozoikum Karbon, Perm
Känozoisches Eiszeitalter /
Quartäres Eiszeitalter
34
2,6
bisher 34
bisher 2,6
Phanerozoikum Känozoikum Oligozän, Miozän, Pliozän, Quartär
Gesamtdauer aller Kaltzeiten: ca. 525

Paläoproterozoisches Eiszeitalter

Obwohl für das Archaikum (vor 4,0 bis 2,5 Milliarden Jahren) nur lückenhafte und zum Teil widersprüchliche Proxyreihen zur Verfügung stehen, wird zumeist angenommen, dass während dieses Äons ein überwiegend warmes Klima herrschte. Allerdings existieren Hinweise auf eine Abkühlungsphase mit möglicherweise regionalen Vergletscherungen in Form des Pongola-Glazials vor 2,9 Milliarden Jahren, über dessen spezielle Charakteristik jedoch nur wenige gesicherte Erkenntnisse vorliegen.[9] Wesentlich ausgeprägter verlief die vor 2,4 Milliarden Jahren einsetzende Paläoproterozoische Vereisung (auch Huronische Eiszeit), mit einer Dauer von 300 Millionen Jahren das längste Eiszeitalter der Erdgeschichte. Geologische Klimazeugen einschließlich paläomagnetischer Auswertungen aus Nordamerika, Skandinavien, Indien sowie im südlichen Afrika deuten auf einen globalen Kälteeinbruch[10] mit einem länger andauernden Schneeball-Erde-Ereignis hin.[11] Aufgrund des großen Zeitabstands schwer nachweisbar und mit großen Unsicherheiten behaftet ist der für spätere Eiszeitalter typische Wechsel verschiedener Kalt- und Warmzeiten. Breite Akzeptanz findet hingegen die Annahme, dass das Eiszeitklima im frühen Paläoproterozoikum eng mit der Großen Sauerstoffkatastrophe (englisch Great Oxigenation Event) verknüpft sein könnte.[12]

Am Beginn des Paläoproterozoikums wies die irdische Atmosphäre eine relativ hohe Methankonzentration, aber nur geringe Spuren an freiem Sauerstoff auf. Zwar produzierten Cyanobakterien schon vor mehr als 3 Milliarden Jahren mittels der Oxygenen Photosynthese als „Abfallprodukt“ ihres Stoffwechsels große Mengen an O2, doch wurde dieser bei der Oxidation von organischen Verbindungen, Schwefelwasserstoff und zweiwertigen Eisen-Ionen Fe2+ in dreiwertige Eisen-Ionen Fe3+ vollständig verbraucht. Nach Abschluss dieser intensiven Oxidationsphase begann sich der Sauerstoff-Überschuss sowohl in der Atmosphäre als auch im Ozean anzureichern. Dieser Prozess führte in marinen Biotopen zum Massenaussterben anaerober Organismen, die der toxischen Wirkung des Sauerstoffs fast vollzählig zum Opfer fielen. In der Atmosphäre oxidierte der Sauerstoff mithilfe der UV-Strahlung den größten Teil des Methanvorkommens zu Kohlenstoffdioxid und Wasser. Da Methan über ein erheblich größeres Treibhauspotenzial als CO2 verfügt, kam es im Anschluss zu einem raschen Klimawandel, und die Temperaturen verharrten für 300 Millionen Jahre auf einem eiszeitlichen Niveau.

Hauptursachen des Paläoproterozoischen Eiszeitalters

  • Zusammenbruch der Methankonzentration: Der weitgehende Abbau der atmosphärischen Methanvorkommen bewirkte eine deutliche Abschwächung des Treibhauseffekts und damit eine Veränderung der Strahlungsbilanz.
  • Schwächere Sonneneinstrahlung: Während ihrer Entwicklung als Hauptreihenstern wies die Sonne im frühen Paläoproterozoikum nur rund 85 Prozent ihrer gegenwärtigen Leuchtkraft auf. Dieses Strahlungsdefizit wurde durch die veränderte Zusammensetzung der Atmosphäre nicht mehr vollständig kompensiert und überführte den Planeten vom ursprünglichen warm-gemäßigten Klima in den Zustand einer globalen Vereisung.

Die Vereisungsphasen im Neoproterozoikum

Fiktionale Darstellung eines Schneeball-Erde-Stadiums im Neoproterozoikum

Nach dem Abklingen des Paläoproterozoischen Eiszeitalters begann eine aus heutiger Perspektive relativ ereignisarme Epoche, die in der Fachliteratur gelegentlich als „langweilige Milliarde“ (englisch The boring billion) bezeichnet wird. Diese Phase endete im Cryogenium vor mehr als 700 Millionen Jahren, als eine Serie rasch verlaufender plattentektonischer Prozesse mit zahlreichen biogeochemischen und klimatischen Turbulenzen wahrscheinlich zu einer mehrmaligen und fast völligen Vereisung der Erde führte. Das gehäufte Auftreten glazialer Relikte in niedrigen Breiten und auf allen Paläokontinenten führte zur Entwicklung der relativ jungen, auch außerhalb der Wissenschaft populären Schneeball-Erde-Hypothese, die seit den 1990er Jahren intensiv und zum Teil kontrovers diskutiert wird.[13] Angaben zu Dauer, Anzahl und chronologischem Ablauf der Kaltzeit-Zyklen galten lange als spekulativ und basierten mitunter auf fragmentarisch belegten Rekonstruktionen. Inzwischen vermitteln jedoch neuere Arbeiten aufgrund der Anwendung präziser Datierungsmethoden ein genaueres Bild im Hinblick auf die zeitliche Einordnung der verschiedenen Glazialphasen (siehe obenstehende Tabelle).[14] Das betrifft auch den Status der Kaigas-Eiszeit (740 mya) und der Gaskiers-Eiszeit[15] (580 mya), die als regionale und zeitlich begrenzte Einschnitte identifiziert wurden.

Der bekannte Geophysiker und Klimatologe Raymond Pierrehumbert bilanzierte bei der Charakterisierung des Neoproterozoikums: The Phanerozoic seems, by comparison, to be a rather quiescent place (deutsch: Das Phanerozoikum scheint dagegen ein eher ruhiger Ort zu sein).[16] Tatsächlich war besonders das Cryogenium (720 bis 635 mya) aufgrund des Auseinanderbrechens des Superkontinents Rodinia ein permanenter geotektonischer Unruheherd. Vor 900 Millionen Jahren hatte Rodinia alle Landmassen in sich vereinigt und damit die maximale Ausdehnung erreicht. Bereits 100 Millionen Jahre später traten erste Zerfallserscheinungen auf: In Verbindung mit mehreren, lange aktiven Superplumes einschließlich der umfangreichen Freisetzung von Flutbasalten entstand an den Plattengrenzen eine Reihe von sich verbreiternden Grabenbrüchen (Riftings), die eine zunehmende Fragmentierung des Kontinents einleiteten. Auf diesen Zerfallsprozess folgte unmittelbar im Zuge der panafrikanischen Orogenese (ca. 600 mya) die Entstehung des neuen, aber nur „kurzlebigen“ Superkontinents Pannotia (auch Groß-Gondwana). Obwohl sich die einzelnen Theorien graduell unterscheiden, wird übereinstimmend angenommen, dass die globale Vereisung der Erde während der Sturtischen und der Marinoischen Eiszeit auf dem Zusammenwirken verschiedener geologischer und geochemischer Komponenten beruht.[17][18][19]

Viele Detailfragen zu den exakten Vereisungsmechanismen und jenen Faktoren, die zur Wiedererwärmung führten, sind in der Wissenschaft bisher nur in Umrissen bekannt oder noch ungeklärt.[16] Mit hinreichender Sicherheit kann während der Schneeball-Erde-Episoden eine selbstverstärkende Eis-Albedo-Rückkopplung vorausgesetzt werden, die eine weltweite Abkühlung auf mindestens –50 °C forciert hatte.[20] Der natürliche Kohlenstoffzyklus kam auf diese Weise fast zum Erliegen, und in den Meeren sank die Biomasseproduktion auf ein Minimum. Dies änderte sich erst, als das ungenutzte atmosphärische Reservoir vulkanischer CO2-Emissionen einen extrem hohen Schwellenwert erreichte, der das Dauerfrost-Klima zum Kippen brachte und ein globales Tauwetter auslöste. Nach diesem Szenario verwandelte sich die Erde innerhalb von mehreren 10.000 Jahren von einem tiefgefrorenen „Schneeball“ unter chaotischen Umweltbedingungen (Starkregen, Wirbelstürme, Meeresspiegelanstieg um mehrere hundert Meter) für kurze Zeit in ein Supertreibhaus mit Temperaturen um 40 °C.

Hauptursachen der Vereisungsphasen im Neoproterozoikum

  • Verschiedene Einflussfaktoren: Allgemein wird eine Kombination verschiedener geologischer und geochemischer Komponenten angenommen (unter anderem Plattentektonik, Flutbasalt-Vulkanismus, umfangreiche Carbonat-Einlagerung, extrem rasch verlaufende Verwitterungsprozesse).

Ordovizisches Eiszeitalter

Im Ordovizium erfolgte die den Verwitterungseffekt verstärkende Ausbreitung von Landpflanzen.

Das Ordovizische Eiszeitalter (auch Anden-Sahara-Eiszeit oder Hirnantische Vereisung) begann vor rund 460 Millionen Jahren im Oberen Ordovizium und endete im frühen Silur vor 430 Millionen Jahren. Anhand eiszeitlicher Ablagerungen konnte die Bewegung des Großkontinents Gondwana über den Südpol in chronologischer Abfolge rekonstruiert werden. Der Kernbereich der Vereisung lag zu Beginn auf der Arabischen Platte beziehungsweise in der heutigen Sahara, wanderte dann über die damals durchgehende Landverbindung westwärts in Richtung Südamerika (Brasilien und unteres Amazonasgebiet) und weitete sich in abgeschwächter Form auf die Region der noch nicht existierenden Andenkette aus.

Die Fachliteratur der letzten Jahrzehnte verzeichnet im Hinblick auf Ursachen und Struktur des Ordovizischen Eiszeitalters eine Reihe unterschiedlicher und zum Teil widersprüchlicher Annahmen. Neuere Studien gehen davon aus, dass die für diese Epoche typischen CO2-Werte lange zu hoch angesetzt waren. Für das Mittlere Ordovizium wird aktuell – bei Ausschluss eines Treibhaus-Szenarios, aber vor dem Hintergrund einer allmählichen Abkühlung – eine Kohlenstoffdioxid-Konzentration unter 3.000 ppm angenommen.[21] Diese Entwicklung hängt ursächlich mit der Vegetationsausbreitung auf dem Festland zusammen. Wahrscheinlich erfolgte die Besiedelung der Kontinente durch moosartige Pflanzen (Bryophyten) und frühe Pilzformen bereits ab dem Mittleren Kambrium und setzte sich im Ordovizium verstärkt fort.[22] Der dichter und umfangreicher werdende florale Bewuchs entwickelte sich dabei zu einem elementaren Klimafaktor, da er erheblich zur beschleunigten chemischen Verwitterung der Erdoberfläche beitrug. Daraus resultierten eine erhöhte Bindung von atmosphärischem Kohlenstoffdioxid und im Zusammenwirken mit anderen Faktoren eine weltweite Abkühlung.[23][24]

Ein abrupter Kälteeinbruch, verbunden mit der raschen Ausdehnung von Meereisflächen und kontinentalen Eisschilden, ereignete sich während der letzten ordovizischen Stufe des Hirnantiums (445,2 bis 443,4 mya), wobei die Oberflächentemperatur äquatorialer Ozeane um 8 °C abnahm und die globale Durchschnittstemperatur von etwa 16 °C auf 11 bis 13 °C sank.[21] Parallel dazu geschah eines der folgenschwersten Massenaussterben der Erdgeschichte, mit einem geschätzten Artenschwund bis 85 Prozent.[25] In der Wissenschaft besteht größtenteils Einigkeit darüber, dass die biologische Krise auf einer Kombination verschiedener Faktoren beruhte, zu denen vermutlich auch ein starker Vulkanismus zählte.[26] Ebenfalls im Hirnantium kam es zur Entstehung eines längeren, bis in das Silur reichenden Ozeanischen anoxischen Ereignisses, das die marinen Lebensräume zusätzlich destabilisierte.[27][28]

In letzter Zeit wird vermehrt die These vertreten, dass nicht das Glazialklima und die damit verbundene Absenkung des Meeresspiegels um mehr als 100 Meter (mit einem Schwund von Flachwasserbiotopen) den primären Aussterbefaktor darstellte, sondern dass gravierende geochemische Veränderungen zur Freisetzung von giftigen Schwermetallen wie Arsen, Blei oder Mangan führten und die zudem eine weitgehende Reduzierung lebenswichtiger Spurenelemente bewirkten.[29] Anhand von Mikrofossilien lässt sich zum fraglichen Zeitpunkt ein hohes Aufkommen fehlgebildeter Organismen nachweisen, die eine Kontaminierung durch toxische Substanzen nahelegen.[30]

Hauptursachen des Ordovizischen Eiszeitalters

  • Verwitterungseffekte: Die Ausbreitung umfangreicher Pflanzenteppiche während des Ordoviziums entzog den Böden eine Reihe von Elementen, woraus eine beschleunigte chemische Verwitterung der Erdoberfläche mit erhöhter Einbindung von atmosphärischem Kohlenstoffdioxid resultierte.
  • Verschiedene Einflussfaktoren: Die im Vergleich zur Gegenwart schwächere Sonneneinstrahlung, eine Tageslänge von weniger als 22 Stunden, die Festlandsbedeckung der Antarktis sowie die umfangreiche Ablagerung von organischem Kohlenstoff im Hirnantium aufgrund anoxischer Bedingungen in den Meeren summierten sich in ihrer Gesamtwirkung zu einem signifikanten Abkühlungsfaktor.[31]

Permokarbones Eiszeitalter

Der Beginn und das genaue Ende des Permokarbonen Eiszeitalters (auch Karoo-Eiszeit) lassen sich nur unscharf eingrenzen. Bereits am Devon-Karbon-Übergang (358,9 mya) kam es mit dem Hangenberg-Ereignis zu einem Massenaussterben und zum Kollaps mehrerer Ökosysteme, verbunden mit Vergletscherungen in den südlichen und westlichen Regionen des Großkontinents Gondwana sowie einem kurzzeitigen Absinken des Meeresspiegels um etwa 100 Meter.[32] Aufgrund der umfangreichen Einlagerung von organischem Kohlenstoff in Schwarzschieferhorizonte nahm die atmosphärische CO2-Konzentration um rund 50 Prozent ab und lag im frühen Karbon bei maximal 1.000 ppm.[33] Der sich daran anschließende Abkühlungstrend (unter kontinuierlicher Verringerung des Kohlenstoffdioxid-Gehalts) wich deutlich vom Warmklima des Devons ab und führte möglicherweise dazu, dass sich im Unterkarbon vor 350 Millionen Jahren die Festlandsvereisung in der südlichen Hemisphäre bis zum 60. Breitengrad ausdehnte.[34]

Eine Intensivierung der Kaltzeitbedingungen mit der Ausbreitung kontinentaler Eisschilde begann im Oberen Mississippium vor 325 Millionen Jahren und betraf weite Teile Gondwanas bis zum 40. südlichen Breitengrad, darunter die heutigen Regionen Südamerika, Südafrika, Antarktika und Australien. Diese vorwiegend eiszeitlich geprägte Umweltsituation blieb im gesamten Pennsylvanium (323,2 bis 298,9 mya) und darüber hinaus bis in das frühe Perm bestehen.[34] Die Analyse von Gesteinskonglomeraten (Diamiktit) stützt die Annahme, dass zeitweilige Vergletscherungen während der Hauptphase des Eiszeitalters auch in höhergelegenen tropischen Regionen auftraten.[35] In den letzten 10 Millionen Jahren des Karbons wechselten in rascher Folge verschiedene Klimazustände, offenbar mitbeeinflusst von den zyklischen Veränderungen der Erdbahnparameter, mit stark variierenden CO2-Konzentrationen zwischen 150 und 700 ppm und entsprechenden Schwankungen des Meeresspiegels (Glazialeustasie).[36] Unter Berücksichtigung der damaligen, um etwa 2 bis 3 Prozent schwächeren Sonneneinstrahlung betrugen die globalen Durchschnittstemperaturen während einer Warmphase 12 bis 14 °C und lagen während einer Kaltzeit mindestens 5 °C darunter. Laut einer Studie von 2017 verringerte sich die CO2-Konzentration im frühesten Perm weiter und sank für kurze Zeit auf einen Wert um 100 ppm. Demnach rückte das Erdsystem in die Nähe jenes Kipppunkts, der den Planeten in den Klimazustand einer globalen Vereisung überführt hätte, vergleichbar mit den Schneeball-Erde-Ereignissen im Neoproterozoikum.[37]

Künstlerische Darstellung des karnivoren Pelycosauriers Dimetrodon aus dem Unterperm.

Im Gegensatz zu den sinkenden CO2-Werten erreichte der Sauerstoffgehalt im späten Karbon die Rekordmarke von 33 bis 35 Prozent. Die hohe O2-Konzentration förderte das Größenwachstum verschiedener Gliederfüßer wie Arthropleura, barg jedoch die Gefahr großflächiger Waldbrände.[38] Nachdem im Verlauf des Pennsylvaniums der Vegetationsumfang während der Glazialphasen mehrmals erhebliche Einbußen verzeichnete,[39] erfolgte vor 305 Millionen Jahren im Kasimovium aufgrund des zunehmend ariden Klimas der weitgehende Zusammenbruch der in Äquatornähe angesiedelten Regenwälder (in der Fachliteratur: Carboniferous Rainforest Collapse).[40] Im Zuge des ersten pflanzlichen Massenaussterbens wurden die tropischen Wälder bis auf einige Vegetationsinseln dezimiert, und ebenso verschwanden viele Feucht- und Sumpfgebiete.[41][42] Vom Verlust dieser Biotope besonders betroffen waren Gliederfüßer, ein Großteil der Amphibien (Temnospondyli) und frühe Reptilien mit semiaquatischer Lebensweise.[43] Durch die Fragmentierung der Lebensräume ging die Biodiversität der Landwirbeltiere (Tetrapoda) an der Karbon-Perm-Grenze deutlich zurück und blieb im frühen Perm zunächst niedrig, ehe im weiteren Verlauf die Artenvielfalt allmählich wieder zunahm.[44]

Im Vergleich mit den anderen Glazialphasen des Phanerozoikums weist das Permokarbone Eiszeitalter eine Reihe von Besonderheiten auf, vor allem in seiner räumlichen und zeitlichen Gliederung: Mehrmals wechselten sich kleine Eiszentren mit Intervallen großräumigen Gletscherwachstums ab, gefolgt von weitgehend eisfreien Perioden.[45] Eine paradoxe Situation verzeichnete das Mittlere Perm gegen Ende des Eiszeitalters, als große Teile Australiens über Jahrmillionen immer wieder von stabilen Eiskappen bedeckt waren, während in allen anderen Gebieten einschließlich der Südpolarregion längst keine nennenswerte Eisbedeckung mehr existierte.[34]

Hauptursachen des Permokarbonen Eiszeitalters

  • Geographische Lage: Die während des Karbons nur wenig veränderte Position der südlichen Regionen von Gondwana im Umkreis der Antarktis war ein wesentlicher Antrieb der Gletscherbildung, da polarnahes Festland schneller und effektiver vereist als offene Meereszonen und dieser Prozess durch die Eis-Albedo-Rückkopplung an Eigendynamik gewinnt.
  • Kohlenstoffdioxid-Reduzierung: Die in der „Steinkohlenzeit“ des Karbons weiter zunehmende Vegetationsbedeckung führte zur Ausbreitung tief wurzelnder und das Erdreich aufspaltender Gewächse. Die Kombination von verstärkter Bodenerosion mit umfangreichen Inkohlungsprozessen entzog der Atmosphäre große Mengen an Kohlenstoff und bewirkte den Rückgang des atmosphärischen CO2 auf einen bis dahin einmaligen Tiefstwert.[46][47]
  • Waldbrände: Bedingt durch den extrem hohen Sauerstoffgehalt traten im Oberen Karbon die wahrscheinlich verheerendsten Wald- und Flächenbrände der Erdgeschichte auf, mit der möglichen Nebenwirkung eines weltumspannenden, das Sonnenlicht dämpfenden Rauch- und Dunstnebels.[48]
  • Plattentektonik: Nachdem sich vor etwa 310 Millionen Jahren die Großkontinente Laurussia und Gondwana zum Superkontinent Pangaea und damit zu einer riesigen Festlandsbarriere vereinigt hatten, stockte der Wasser- und Wärmeaustausch der äquatorialen Meeresströmungen, wodurch sich die herrschende Abkühlungstendenz weiter verstärkte.

Das gegenwärtige Eiszeitalter

Vorlage:Linkbox Känozoikum (Geologie) Das bis heute andauernde Känozoische Eiszeitalter (mit dem Quartären Eiszeitalter als jüngsten Abschnitt) begann mit der allmählichen Vergletscherung des Kontinents Antarktika am Beginn des Oligozäns. Vor etwa 2,7 bis 2,4 Millionen Jahren setzte im Umkreis der Pliozän-Pleistozän-Grenze die verstärkte Eisbildung auch in der Arktis ein. Ab diesem Zeitpunkt wechselten sich längere Kaltzeiten (Glaziale) mit kürzeren Warmzeiten (Interglaziale) ab.

Bis in das spätere Eozän waren Antarktika und Südamerika durch eine Landbrücke miteinander verbunden, ehe sich die Drakestraße zu öffnen begann. Aufgrund dieses tektonischen Prozesses entstand im Südpolarmeer der Antarktische Zirkumpolarstrom, der Antarktika von der Zufuhr wärmeren Meerwassers abschnitt und wahrscheinlich einen weltweiten Abkühlungsprozess einleitete. Die Temperatur der Ozeane ging bis in tiefere Regionen um 4 bis 5 °C zurück, und die Meeresspiegelhöhe nahm innerhalb relativ kurzer Zeit um etwa 30 Meter ab. Gleichzeitig erfolgte ein steiler Abfall der atmosphärischen CO2-Konzentration bis zu 40 Prozent.[49] Die bei einem CO2-Schwellenwert um 600 ppm einsetzende Vereisung des südpolaren Festlands vor rund 34 Millionen Jahren markiert den Beginn des Känozoischen Eiszeitalters.[50] Im Verlauf des Pliozäns erreichte der antarktische Eisschild seine heutige Ausdehnung von 14 Millionen km². In der Folgezeit und verstärkt seit Beginn des Quartärs nahm jedoch die Masse der Eisbedeckung ständig zu, bis zu einer Mächtigkeit von stellenweise 4.500 Meter.

Durch die Entstehung der Landenge von Panama vor 2,76 Millionen Jahren bildete sich der Golfstrom, der fortan nicht nur warme Meeresströmungen nach Norden lenkte, sondern auch zur Erhöhung der Luftfeuchtigkeit in den arktischen Regionen beitrug.[51] Nach gegenwärtigem Forschungsstand spielt der Einfluss des Golfstroms auf Vereisungsprozesse allerdings nur eine untergeordnete Rolle. Überwiegend wird davon ausgegangen, dass die im frühen Quartär zunehmende Vergletscherung der Arktis auf einen deutlichen Rückgang der weltweiten CO2-Konzentration zurückzuführen ist.[52]

Innerhalb des Quartären Eiszeitalters wechselten relativ warme mit sehr kalten Abschnitten. Die Kaltphasen (Glaziale) waren geprägt von massiven Gletschervorstößen und umfassten deutlich längere Zeiträume als die Warmphasen (Interglaziale), die durchschnittlich rund 15.000 Jahre dauerten. Aktuell beansprucht ein Zyklus von einer Warmzeit zur nächsten etwas mehr als 100.000 Jahre und ist damit an die gleich langen Veränderungen der Erdumlaufbahn (Exzentrizität) gekoppelt. Diese Periode trat in voller Ausprägung erstmals im frühen Mittelpleistozän vor rund 700.000 Jahren auf. Vorher – das heißt seit dem Beginn des Quartärs – betrug die Zyklusdauer lediglich 41.000 Jahre und korrelierte zu dieser Zeit mit den Schwankungen der Erdrotationsachse.[53] Für die letzten 800.000 Jahre wurden elf Interglaziale nachgewiesen. Die Dauer dieser Zwischeneiszeiten betrug im Normalfall etwa 10.000 bis 30.000 Jahre, lediglich für den Zeitraum der Marinen Isotopenstufe 11c (MIS 11c) werden maximal 40.000 Jahre veranschlagt.[54] Während der letzten Kaltzeiten nahmen die Inlandeisschilde und Gebirgsgletscher erheblich an Umfang und Volumen zu und bedeckten schließlich etwa 32 Prozent des Festlands. Gegenwärtig sind nur etwa 10 Prozent der Kontinentalfläche von Gletschern bedeckt. Vor allem auf der Nordhalbkugel der Erde waren große Teile Europas, Asiens und Nordamerikas vergletschert. Viele Vereisungsspuren (zum Beispiel Trogtäler, Moränen und Gletscherschliffe) haben sich dort bis heute erhalten.

Das aktuelle Interglazial, in der geologischen Zeitskala als Holozän verzeichnet, ist die jüngste Warmzeit des Känozoischen Eiszeitalters, mit einer bisherigen Dauer von etwa 11.700 Jahren. Auch in den wärmeren Epochen eines Eiszeitalters verharrt das Klima im erdgeschichtlichen Vergleich auf einem relativ kühlen Niveau. Die Eisbedeckung der Polarregionen und Hochgebirge bleibt meistens bestehen, Gletschervorstöße bis in mittlere Breiten werden hingegen zurückgebildet, und es herrscht in diesen Gebieten ein deutlich gemäßigtes Klima mit milderen Wintern.

Hauptursachen des Känozoischen Eiszeitalters

  • Reduzierung des atmosphärischen Kohlenstoffdioxids: Die im Mittleren Eozän beginnende CO2-Verringerung aufgrund verschiedener kohlenstoffbindender Prozesse unterschritt in der zweiten Hälfte des Känozoikums mehrere Schwellenwerte, was zu einer beschleunigten Abkühlung und letztendlich zu großflächigen Vergletscherungen beider Polarregionen führte.
  • Ozeanische Zirkulation: Die Entstehung des kalten Antarktischen Zirkumpolarstroms trug zusammen mit der exponierten geographischen Lage von Antarktika wesentlich zur Eisbedeckung des Kontinents bei.
  • Milanković-Zyklen: Die relativ schwache, aber durch mehrere Rückkopplungen (vor allem durch Treibhausgase) verstärkte Wirkung der sich über längere Zeiträume verändernden Erdbahnparameter gab den Anstoß für den Wechsel der Warm- und Kaltzeiten während des Quartären Eiszeitalters.[55] Danach war die Konzentrationsabnahme von Kohlenstoffdioxid, Methan und Distickstoffoxid zu etwa einem Drittel an den Temperaturschwankungen der Warm- und Kaltzeitzyklen beteiligt,[56] nach einer anderen Publikation sogar zur Hälfte.[57]

Literatur

Englischsprachige Werke

  • William Ruddiman: Earth’s climate, past and future. W. H. Freeman, New York 2002, ISBN 0-7167-3741-8
  • Fiona M. Hyden, Angela L. Coe: The Great Ice Age The Open University, Walton Hall, Milton Keynes, 2nd Edition 2007, ISBN 978-0-7492-1908-6* Raymond T. Pierrehumbert: Principles of Planetary Climate. Cambridge University Press, 2010, ISBN 978-0-521-86556-2.
  • Raymond S. Bradley: Paleoclimatology. Reconstructing Climates of the Quaternary. Academic Press (Elsevier Inc.) Oxford, Amsterdam, Waltham, San Diego, Third Edition 2015, ISBN 978-0-12-386913-5.

Deutschsprachige Werke

  • Edmund Blair Bolles: Eiszeit. Wie ein Professor, ein Politiker und ein Dichter das ewige Eis entdeckten. Argon, Berlin 2000, ISBN 3-87024-522-0 (zur Forschungsgeschichte, insbesondere Louis Agassiz, Charles Lyell und Elisha Kent Kane)
  • Christoph Buchal, Christian-Dietrich Schönwiese: Klima. Die Erde und ihre Atmosphäre im Wandel der Zeiten. Hrsg.: Wilhelm und Else Heraeus-Stiftung, Helmholtz-Gemeinschaft Deutscher Forschungszentren, 2. Auflage. Hanau 2012, ISBN 978-3-89336-589-0.
  • Jürgen Ehlers: Das Eiszeitalter. Spektrum Akademischer Verlag, Heidelberg 2011, ISBN 978-3-8274-2326-9
  • Jürgen Ehlers: Allgemeine und historische Quartärgeologie. Enke, Stuttgart 1994, ISBN 3-432-25911-5
  • Jürgen Ehlers & Philip L. Gibbard: The extent and chronology of Cenozoic global glaciation. In: Quaternary International. Volumes 164–165, April 2007, S. 6–20, doi:10.1016/j.quaint.2006.10.008
  • Wolfgang Fraedrich: Spuren der Eiszeit. Landschaftsformen in Europa. Springer, Berlin [u. a.] 2006, ISBN 3-540-61110-X
  • Josef Klostermann: Das Klima im Eiszeitalter. Schweizerbart, Stuttgart 1999, ISBN 3-510-65189-8
  • Tobias Krüger: Die Entdeckung der Eiszeiten. Internationale Rezeption und Konsequenzen für das Verständnis der Klimageschichte. Schwabe, Basel 2008, ISBN 978-3-7965-2439-4 (Wissenschaftsgeschichte)
  • Hansjürgen Müller-Beck: Die Eiszeiten. Naturgeschichte und Menschheitsgeschichte. Beck, München 2005, ISBN 3-406-50863-4 (knappe Einführung)* Christian-Dietrich Schönwiese: Klimatologie. 4., überarbeitete und aktualisierte Auflage. UTB, Stuttgart 2013, ISBN 978-3-8252-3900-8.
  • Roland Walter: Erdgeschichte. Die Entstehung der Kontinente und Ozeane. 5. Auflage. de Gruyter, Berlin/New York 2003, ISBN 3-11-017697-1
Commons: Eiszeitalter – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Eiszeitalter – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Fußnoten

  1. Hans Murawski & Wilhelm Meyer: Geologisches Wörterbuch. 11. Auflage. Spektrum Akademischer Verlag, München 2004, ISBN 3-8274-1445-8
  2. John Imbrie & Katherine Palmer Imbrie: Ice Ages: Solving the Mystery. Enslow Publishers, Short Hills (NJ) 1979, ISBN 978-0-89490-015-0.
  3. Tobias Krüger: Die Entdeckung der Eiszeiten. Internationale Rezeption und Konsequenzen für das Verständnis der Klimageschichte. Basel 2008, ISBN 978-3-7965-2439-4. S. 213 ff.
  4. Peter Marcott, Jeremy D. Shakun, Peter U. Clark, Alan C. Mix: A Reconstruction of Regional and Global Temperature for the Past 11,300 Years. In: Science. 6124. Jahrgang, Nr. 269, März 2013, S. 1198–1201, doi:10.1126/science.1228026 (englisch, bc.edu [PDF]).
  5. A. Ganopolski, R. Winkelmann, H. J. Schellnhuber: Critical insolation–CO2 relation for diagnosing past and future glacial inception. In: Nature. 529. Jahrgang, Nr. 7585, Januar 2016, S. 200–203, doi:10.1038/nature16494 (englisch).
  6. Paul F. Hoffman, Alan J. Kaufman, Galen P. Halverson & Daniel P. Schrag: A Neoproterozoic Snowball Earth. In: Science. Vol. 281, No. 5381, 28. August 1998, S. 1342–1346, doi:10.1126/science.281.5381.1342
  7. Nicholas Eyles & Nicole Januszczak: „Zipper-rift“: A tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. In: Earth-Science Reviews. Vol. 65, Issues 1–2, März 2004, S. 1–73, doi:10.1016/S0012-8252(03)00080-1 (PDF)
  8. Alfred Wegener: Die Entstehung der Kontinente und Ozeane. Vierte umgearbeitete Auflage. Braunschweig 1929, S. 135 f.
  9. James F. Kasting, Shuhei Ono: Palaeoclimates: the first two billion years. In: The Royal Society Publishing, Philosophical Transactions B. Juni 2006, doi:10.1098/rstb.2006.1839 (englisch, researchgate.net [PDF]).
  10. Phillip W. Schmidt, George E. Williams: Paleomagnetism of the Lorrain Formation, Quebec, and Implications for The Latitude of Huronian Glaciation (PDF), Geophysical Research Abstracts, Vol. 5, 08262, 2003
  11. Robert E. Kopp, Joseph L. Kirschvink, Isaac A. Hilburn, Cody Z. Nash: The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. In: PNAS. 102. Jahrgang, Nr. 32, Juni 2005, S. 11131–11136, doi:10.1073/pnas.0504878102 (englisch).
  12. Heinrich D. Holland: The oxygenation of the atmosphere and oceans. In: Philosophical Transactions of Royal Society B. 361. Jahrgang, Nr. 1470, Juni 2006, S. 903–915, doi:10.1098/rstb.2006.1838 (englisch, semanticscholar.org [PDF]).
  13. P. F. Hoffman, A. J. Kaufman, G. P. Halverson, D. P. Schrag: A Neoproterozoic Snowball Earth. In: Science. 281. Jahrgang, Nr. 5381, August 1998, S. 1342–1346, doi:10.1126/science.281.5381.1342 (englisch, sciencemag.org [PDF]).
  14. Alan D. Rooney, Justin V. Strauss, Alan D. Brandon, Francis A. Macdonald: A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. In: Geology. 43. Jahrgang, Nr. 5, Mai 2015, S. 459–462, doi:10.1130/G36511.1 (englisch, semanticscholar.org [PDF]).
  15. Judy P. Pu, Samuel A. Bowring, Jahandar Ramezani, Paul Myrow, Timothy D. Raub, Ed Landing, Andrea Mills, Eben Hodgin, Francis A. Macdonald: Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. In: Geology. 44. Jahrgang, Nr. 11, November 2016, S. 955–958, doi:10.1130/G38284.1 (englisch, harvard.edu [PDF]).
  16. a b R. T. Pierrehumbert, D. S. Abbot, A. Voigt, D. Koll: Climate of the Neoproterozoic. In: The Annual Review of Earth and Planetary Science. 39. Jahrgang, Mai 2011, S. 417–460, doi:10.1146/annurev-earth-040809-152447 (englisch, researchgate.net [PDF]).
  17. Galen P. Halverson, Ross K. Stevenson, Michelle Vokaty, André Poirier, Marcus Kunzmann, Zheng-Xiang Li, Steven W. Denyszyn, Justin V. Strauss, Francis A. Macdonald: Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. In: Earth and Planetary Science Letters. 446. Jahrgang, Juli 2016, S. 89–99, doi:10.1016/j.epsl.2016.04.016 (englisch, researchgate.net [PDF]).
  18. T. M. Gernon, T. K. Hincks, T. Tyrrell, E. J. Rohling, M. R. Palmer: Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. In: Nature Geoscience. 9. Jahrgang, Januar 2016, S. 242–248, doi:10.1038/ngeo2632 (englisch, highstand.org [PDF]).
  19. Richard J. Squire, Ian H. Campbell, Charlotte M. Allen, Christopher J. L. Wilson: Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? In: Earth and Planetary Science Letters. 250. Jahrgang, Nr. 1–2, Oktober 2006, S. 116–133, doi:10.1016/j.epsl.2006.07 (englisch, arizona.edu [PDF]).
  20. Irina V. Gorodetskaya, Mark A. Cane, L.‐Bruno Tremblay, Alexey Kaplan: The effects of sea‐ice and land‐snow concentrations on planetary albedo from the earth radiation budget experiment. In: Atmosphere-Ocean. 44. Jahrgang, Nr. 2, 2006, S. 195–205, doi:10.3137/ao.440206 (englisch).
  21. a b Thijs R. A. Vandenbroucke, Howard A. Armstrong, Mark Williams, Florentin Paris, Jan A. Zalasiewicz, Koen Sabbe, Jaak Nõlvak, Thomas J. Challands, Jacques Verniers, Thomas Servais: Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse. In: PNAS. 107. Jahrgang, Nr. 34, August 2010, S. 14983–14986 (englisch, researchgate.net [PDF]).
  22. Jennifer L. Morris, Mark N. Puttick, James W. Clark, Dianne Edwards, Paul Kenrick, Silvia Pressel, Charles H. Wellman, Ziheng Yang, Harald Schneider, Philip C. J. Donoghue: The timescale of early land plant evolution. In: PNAS. 115. Jahrgang, Nr. 10, März 2018, S. E2274–E2283, doi:10.1073/pnas.1719588115 (englisch).
  23. Timothy M. Lenton, Michael Crouch, Martin Johnson, Nuno Pires, Liam Dolan: First plants cooled the Ordovician. In: Nature Geoscience. 5. Jahrgang, Februar 2012, S. 86–89, doi:10.1038/ngeo1390 (englisch, uni-bremen.de [PDF]).
  24. P. Porada, T. M. Lenton, A. Pohl, B. Weber, L. Mander, Y. Donnadieu, C. Beer, U. Pöschl, A. Kleidon: High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. In: Nature Communications. 7. Jahrgang, August 2016, doi:10.1038/ncomms12 (englisch, nature.com [PDF]).
  25. David A. T. Hapera, Emma U. Hammarlund, Christian M. Ø. Rasmussen: End Ordovician extinctions: A coincidence of causes. In: Gondwana Research (Elsevier). 25. Jahrgang, Nr. 4, Mai 2014, S. 1294–1307, doi:10.1016/j.gr.2012.12.021 (englisch, researchgate.net [PDF]).
  26. Seth A. Young, Matthew R. Saltzman, Kenneth A. Foland, Jeff S. Linder, Lee R. Kump: A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate? In: Geology. 37. Jahrgang, Nr. 10, 2009, S. 951–954, doi:10.1130/G30152A.1 (ohio-state.edu [PDF]).
  27. Emma U. Hammarlund, Tais W. Dahl, David A. T. Harper, David P. G. Bond, Arne T. Nielsen, Christian J. Bjerrum, Niels H. Schovsbo, Hans P. Schönlaub, Jan A. Zalasiewicz, Donald E. Canfield: A sulfidic driver for the end-Ordovician mass extinction. In: Earth and Planetary Science Letters. 331–332. Jahrgang, Mai 2012, S. 128–139, doi:10.1016/j.epsl.2012.02.024 (englisch, researchgate.net [PDF]).
  28. Rick Bartlett, Maya Elrick, James R. Wheeley, Victor Polyak, André Desrochers, Yemane Asmerom: Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. In: PNAS. 115. Jahrgang, Nr. 23, Juni 2018, S. 5896–5901, doi:10.1073/pnas.1802438115 (englisch, pnas.org [PDF]).
  29. John A. Long, Ross R. Large, Michael S. Y. Lee, Michael J. Benton, Leonid V. Danyushevsky, Luis M. Chiappe, Jacqueline A. Halpin, David Cantrill, Bernd Lottermoser: Severe selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events. In: Gondwana Research. 36. Jahrgang, August 2016, S. 209–218, doi:10.1016/j.gr.2015.10.001 (englisch, amazonaws.com [PDF]).
  30. Thijs R. A. Vandenbroucke, Poul Emsbo, Axel Munnecke, Nicolas Nuns, Ludovic Duponchel, Kevin Lepot, Melesio Quijada, Florentin Paris, Thomas Servais, Wolfgang Kiessling: Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinctions. In: Nature Communications. 6. Jahrgang, August 2015, doi:10.1038/ncomms8966 (englisch).
  31. Pascale F. Poussart, Andrew J. Weaver, Christopher R. Barne: Late Ordovician glaciation under high atmospheric CO2: A coupled model analysis. In: Paleoceanography. 14. Jahrgang, Nr. 4, August 1999, S. 542–558, doi:10.1029/1999PA900021 (englisch, amazonaws.com [PDF]).
  32. Sarah K. Carmichael, Johnny A. Waters, Cameron J. Batchelor, Drew M. Coleman, Thomas J. Suttner, Erika Kido, L. M. Moore, Leona Chadimová: Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt. In: Gondwana Research. 32. Jahrgang, April 2016, S. 213–231, doi:10.1016/j.gr.2015.02.009 (englisch, uncg.edu [PDF]).
  33. Leszek Marynowski, Michał Zatoń, Michał Rakociński, Paweł Filipiak, Slawomir Kurkiewicz, Tim J. Pearce: Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. In: Palaeogeography, Palaeoclimatology, Palaeoecology. 346–347. Jahrgang, August 2012, S. 66–86, doi:10.1016/j.palaeo.2012.05.020 (englisch, researchgate.net [PDF]).
  34. a b c John L. Isbell, Lindsey C. Henry, Erik L. Gulbranson, Carlos O. Limarino, Margaret L. Fraiser, Zelenda J. Koch, Patricia L. Ciccioli, Ashley A. Dineen: Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. In: Gondwana Research. 22. Jahrgang, Nr. 1, Juli 2012, S. 1–19, doi:10.1016/j.gr.2011.11.005 (englisch, researchgate.net [PDF]).
  35. Gerilyn S. Soreghan, Dustin E. Sweet, Nicholas G. Heaven: Upland Glaciation in Tropical Pangaea: Geologic Evidence and Implications for Late Paleozoic Climate Modeling. In: The Journal of Geology. 122. Jahrgang, Nr. 2, März 2014, S. 137–163, doi:10.1086/675255 (englisch, researchgate.net [PDF]).
  36. Isabel P. Montañez, Jennifer C. McElwain, Christopher J. Poulsen, Joseph D. White, William A. DiMichele, Jonathan P. Wilson, Galen Griggs, Michael T. Hren: Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles. In: Nature Geoscience. 9. Jahrgang, Nr. 11, November 2016, S. 824–828, doi:10.1038/ngeo2822 (englisch, researchgate.net [PDF]).
  37. Georg Feulner: Formation of most of our coal brought Earth close to global glaciation. In: PNAS. 114. Jahrgang, Nr. 43, Oktober 2017, S. 11333–11337, doi:10.1073/pnas.1712062114 (englisch).
  38. Andrew C. Scott, Ian J. Glasspool: The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. In: PNAS. 103. Jahrgang, Nr. 29, Juli 2006, S. 10861–10865, doi:10.1073/pnas.0604090103 (englisch).
  39. Howard J. Falcon-Lang, William A. DiMichele: What happened to the coal forests during Pennsylvanian glacial phases? In: Palaios. 25. Jahrgang, Nr. 9, September 2010, S. 611–617, doi:10.2110/palo.2009.p09-162r (englisch, amazonaws.com [PDF]).
  40. Erik L. Gulbranson, Isabel P. Montañez, Neil J. Tabor, C. Oscar Limarino: Late Pennsylvanian aridification on the southwestern margin of Gondwana (Paganzo Basin, NW Argentina): A regional expression of a global climate perturbation. In: Palaeogeography, Palaeoclimatology, Palaeoecology. 417. Jahrgang, Januar 2015, S. 220–235, doi:10.1016/j.palaeo.2014.10.029 (englisch, semanticscholar.org [PDF]).
  41. Borja Cascales-Miñana and Christopher J. Cleal: The plant fossil record reflects just two great extinction events. In: Terra Nova. 26. Jahrgang, Nr. 3, 2013, S. 195–200, doi:10.1111/ter.12086.
  42. William A. DiMichele, Neil J. Tabor, Dan S. Chaney, W. John Nelson: From wetlands to wet spots: Environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. In: GSA (Geological Society of America). Special Paper 399. Jahrgang, 2006, S. 223–248, doi:10.1130/2006.2399(11) (englisch, researchgate.net [PDF]).
  43. Sarda Sahney, Michael J. Benton, Howard J. Falcon-Lang: Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica. In: Geology. 38. Jahrgang, Nr. 12, November 2010, S. 1079–1082, doi:10.1130/G31182.1 (englisch, royalholloway.ac.uk [PDF]).
  44. Emma M. Dunne, Roger A. Close, David J. Button, Neil Brocklehurst, Daniel D. Cashmore, Graeme T. Lloyd, Richard J. Butler: Diversity change during the rise of tetrapods and the impact of the ‘Carboniferous rainforest collapse’: A regional expression of a global climate perturbation. In: Proceedings of the Royal Society B (Biological Sciences). 285. Jahrgang, Nr. 1972, Februar 2018, doi:10.1098/rspb.2017.2730 (englisch).
  45. James W. Bishop, Isabel P. Montañez, David A. Osleger: Dynamic Carboniferous climate change, Arrow Canyon, Nevada. In: Geosphere (Geological Society of America). 6. Jahrgang, Nr. 1, Februar 2010, S. 1–34, doi:10.1130/GES00192.1 (englisch, amazonaws.com [PDF]).
  46. Alexander J. Hetherington, Joseph G. Dubrovsky, Liam Dolan: Unique Cellular Organization in the Oldest Root Meristem. In: Current Biology. 26. Jahrgang, Nr. 12, Juni 2016, S. 1629–1633, doi:10.1016/j.cub.2016.04.072 (englisch).
  47. Peter Franks: New constraints on atmospheric CO2 concentration for the Phanerozoic. In: Geophysical Research Letters. 31. Jahrgang, Nr. 13, Juli 2014, doi:10.1002/2014GL060457 (englisch, wesleyan.edu [PDF]).
  48. Peter Ward, Joe Kirschvink: Eine neue Geschichte des Lebens. Wie Katastrophen den Lauf der Evolution bestimmt haben, Deutsche Verlags Anstalt, München 2016, ISBN 978-3-421-04661-1, S. 443 f.
  49. Mark Pagani, Matthew Huber, Zhonghui Liu, Steven M. Bohaty, Jorijntje Henderiks, Willem Sijp, Srinath Krishnan, Robert M. DeConton: The Role of Carbon Dioxide During the Onset of Antarctic Glaciation. In: Science. 334. Jahrgang, Nr. 6060, Dezember 2011, S. 1261–1264, doi:10.1126/science.1203909 (englisch, yale.edu [PDF]).
  50. Simone Galeotti, Robert DeConto, Timothy Naish, Paolo Stocchi, Fabio Florindo, Mark Pagani, Peter Barrett, Steven M. Bohaty, Luca Lanci, David Pollard, Sonia Sandroni, Franco M. Talarico, James C. Zachos: Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. In: Science. 352. Jahrgang, Nr. 6281, April 2016, S. 76–80, doi:10.1126/science.aab0669 (englisch, researchgate.net [PDF]).
  51. Aaron O’Dea, Harilaos A. Lessios, Anthony G. Coates, Ron I. Eytan, Sergio A. Restrepo-Moreno, Alberto L. Cione, Laurel S. Collins, Alan de Queiroz, David W. Farris, Richard D. Norris, Robert F. Stallard, Michael O. Woodburne, Orangel Aguilera, Marie-Pierre Aubry, William A. Berggren, Ann F. Budd, Mario A. Cozzuol, Simon E. Coppard, Herman Duque-Caro, Seth Finnegan, Germán M. Gasparini, Ethan L. Grossman, Kenneth G. Johnson, Lloyd D. Keigwin, Nancy Knowlton, Egbert G. Leigh, Jill S. Leonard-Pingel, Peter B. Marko, Nicholas D. Pyenson, Paola G. Rachello-Dolmen, Esteban Soibelzon, Leopoldo Soibelzon, Jonathan A. Todd, Geerat J. Vermeij, Jeremy B. C. Jackson: Formation of the Isthmus of Panama. In: Science Advances. 2. Jahrgang, Nr. 8, August 2016, doi:10.1126/sciadv.1600883 (englisch, sciencemag.org).
  52. Matteo Willeit, Andrey Ganopolski, Reinhard Calov, Alexander Robinson, Mark Maslin: The role of CO2 decline for the onset of Northern Hemisphere glaciation. In: Quaternary Science Reviews. 119. Jahrgang, Juli 2015, S. 22–34, doi:10.1016/j.quascirev.2015.04.015 (englisch, gfz-potsdam.de [PDF]).
  53. Adam P. Hasenfratz, Samuel L. Jaccard, Alfredo Martínez-García, Daniel M. Sigman, David A. Hodell, Derek Vance, Stefano M. Bernasconi, Helga (Kikki) F. Kleiven, F. Alexander Haumann, Gerald H. Haug: The residence time of Southern Ocean surface waters and the 100,000-year ice age cycle. In: Science. 363. Jahrgang, Nr. 6431, März 2019, S. 1080–1084, doi:10.1126/science.aat7067 (englisch).
  54. A. Berger, M. Cruci, D. A. Hodell, C. Mangili, J. F. McManus, B. Otto-Bliesner, K. Pol, D. Raynaud, L. C. Skinner, P. C. Tzedakis, E. W. Wolff, Q. Z. Yin, A. Abe-Ouchi, C. Barbante, V. Brovkin, I. Cacho, E. Capron, P. Ferretti, A. Ganopolski, J. O. Grimalt, B. Hönisch, K. Kawamura, A. Landais, V. Margari, B. Martrat, V. Masson-Delmotte, Z. Mokeddem, F. Parrenin, A. A. Prokopenko, H. Rashid, M. Schulz, N. Vazquez Riveiros (Past Interglacials Working Group of PAGES): Interglacials of the last 800,000 years. In: Reviews of Geophysics (AGU Publications). 54. Jahrgang, Nr. 1, März 2016, S. 162–219, doi:10.1002/2015RG000482 (englisch, cam.ac.uk [PDF]).
  55. Dieter Lüthi, Martine Le Floch, Bernhard Bereiter, Thomas Blunier, Jean-Marc Barnola, Urs Siegenthaler, Dominique Raynaud, Jean Jouzel, Hubertus Fischer, Kenji Kawamura, Thomas F. Stocker: High-resolution carbon dioxide concentration record 650,000–800,000 years before present. In: Nature. Vol. 453, 2008, S. 379–382, doi:10.1038/nature06949
  56. Eystein Jansen & Jonathan Overpeck et al.: Palaeoclimate. In: IPCC Fourth Assessment Report. 2007 (PDF; 8,1 MB – 6.4.1 und Figure 6.5)
  57. James Hansen, Makiko Sato, Pushker Kharecha, David Beerling, Robert Berner, Valerie Masson-Delmotte, Mark Pagani, Maureen Raymo, Dana L. Royer & James C. Zachos: Target Atmospheric CO2: Where Should Humanity Aim? In: The Open Atmospheric Science Journal. Vol. 2, 2008, S. 217–231, doi:10.2174/1874282300802010217 (PDF; 1,4 MB)