Zum Inhalt springen

Bus (Datenverarbeitung)

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 20. Juli 2004 um 14:37 Uhr durch 1-1111 (Diskussion | Beiträge) (Parallel: IEC-625-Bus oder IEEE-488 ist ein extrener Bus...). Sie kann sich erheblich von der aktuellen Version unterscheiden.


Die Bezeichnung Bus ist im Bereich der Datenverarbeitung die umgangssprachliche Abkürzung von Datenbus. Ein Datenbus ist ein Leitungssystem mit zugehörigen Steuerungskomponenten, das zum Austausch von Daten und / oder Energie zwischen Hardware-Komponenten dient. Bussysteme finden Anwendung insbesondere innerhalb von Computern und zur Verbindung von Computern mit Peripheriegeräten, aber auch in der Ansteuerung von Maschinen (Feldbusse) sowie immer häufiger in Automobilen zur Verbindung der elektronischen Einzelsysteme eines Fahrzeugs.

Achtung: Datenbus und Adressbus bezeichnen in Zusammenhang mit CPUs oder Steckkarten-Systemen zwei unterschiedliche logische oder physikalische Subsysteme - eines für die Übermittlung von Integer-Daten und ein anderes zur Übermittlung von Adressen. Beide können unterschiedlich breit sein, ggf. auch schmaler als logisch notwendig - und möglicherweise findet ein Multiplexing statt, um dies zu kompensieren.

Bus als Teil des Computers

In der Computerarchitektur ist ein Bus ein Untersystem, das Daten oder Energie zwischen Computerbestandteilen innerhalb eines Computers oder zwischen verschiedenen Computern überträgt. Anders als bei einem Anschluss, bei dem ein Gerät mit einem anderen über eine oder mehrere Leitungen verbunden ist, kann ein Bus verschiedene Peripheriegeräte über den gleichen Satz von Leitungen miteinander verbinden.

Frühe Busse waren tatsächlich nur parallele Stromschienen mit mehreren Anschlüssen, aber die Bezeichnung wird jetzt für jede Anordnung verwendet, die die gleiche Funktionalität wie ein paralleler elektrischer Bus zur Verfügung stellt. Moderne Computerbusse können sowohl parallel, als auch bit-seriell verwendet werden. Sie können als multidrop oder in einer Kette nacheinander, oder durch switched hubs - wie im Fall von USB - verbunden werden.

Die meisten Computer haben interne und externe Busse. Ein interner Bus schließt alle internen Bestandteile eines Computers an die Hauptplatine an (und folglich die CPU und den internen Speicher). Ein solcher interner Bus wird auch als lokaler Bus bezeichnet, weil er dafür gedacht ist, mit im Computer selbst vorhandenen Geräten zu verbinden, und nicht mit solchen in anderen Computern oder mit externen. Ein externer Bus schließt demgemäß externe Peripherie an die Hauptplatine an.

Geschichtliche Entwicklung

Frühe Bussysteme von Computern waren im Wesentlichen die Stifte der CPU, die heraus auf den Platineneinschub ragten. Speicher und andere Geräte wurden an den Bus an den gleichen Adressen und Datenstiften angebracht, die die CPU selbst benutzt, und zwar durch parallelen Anschluss. Die Kommunikation wurde durch die CPU gesteuert, die die Daten von den Geräten gelesen und geschrieben hat, als ob sie die Blöcke aus dem Speicher liest. Alles wurde dabei durch einen zentralen Zeitgeber getaktet, der die Arbeitsgeschwindigkeit der CPU steuerte. Angeschlossene Geräte zeigten der CPU, dass sie Daten senden oder empfangen wollen, indem sie auf anderen CPU-Stiften ein Signal sendeten, was gewöhnlich durch eine Form von Interrupt geschah. Zum Beispiel hat ein Laufwerkscontroller (siehe Controller) der CPU signalisiert, dass neue Daten bereit waren gelesen zu werden, worauf die CPU die Daten verschob, indem sie den Speicher an dem Anschluss las, der dem Laufwerk entsprach. Fast alle frühen Computer wurden auf diese Weise zusammengesetzt, beginnend mit dem S-100 Bus im Altair und bis hin zum IBM PC in den 1980ern.

Diese "erste Generation" von Bussystemen litt jedoch unter dem gravierenden Nachteil, dass alles auf dem Bus mit der gleichen Geschwindigkeit arbeiten und alle Geräte sich einen einzelnen Taktgeber teilen mussten. Die Arbeitsgeschwindigkeit der CPU zu erhöhen war nicht einfach, weil man die Geschwindigkeit aller angeschlossenen Geräte ebenfalls steigern musste. Dies führte zu der seltsamen Situation, dass sehr schnelle CPUs "runterbremsen" mussten, um mit anderen Geräten im Computer kommunizieren zu können. Ein anderes Problem war, dass die CPU für alle Operationen benötigt wurde, und so, wenn sie mit anderen Aufgaben beschäftigt war, der reale Datendurchsatz des Busses drastisch darunter zu leiden hatte. Ein anderes praktisches Problem war, dass diese frühen Bussysteme schwierig zusammenzustellen waren, da sie viele Jumper erforderten, um die verschiedenen Betriebsparameter einzustellen.

Bussysteme der "zweiten Generation" wie NuBus waren auf die Lösung einiger dieser Probleme gerichtet. Sie teilten den Computer gewöhnlich in zwei "Welten", die CPU und den Speicher auf der einen Seite und die anzuschließenden Geräte auf der anderen, mit einem Buscontroller dazwischen. Dies erlaubte es, die Geschwindigkeit der CPU zu erhöhen, ohne den Bus zu beeinflussen. Dadurch wurde auch viel von der Belastung für das Verschieben der Daten aus CPU heraus und in die Karten und den Controller verringert, weil Geräte über den Bus ohne Einschaltung der CPU miteinander sprechen konnten. Dieses führte zu viel besserer tatsächlicher Leistung in der Praxis, erforderte aber auch eine viel höhere Komplexität der im Computer installierten Geräte. Weiter gingen diese Bussysteme das Geschwindigkeitsproblem an, indem sie einfach einen größeren Datentransportweg wählten, und so von den 8-bit parallelen Bussen der ersten Generation zu 16 oder 32-bit in der zweiten übergingen. Eine weitere Verbesserung bestand darin, dass Softwareeinstellungen hinzugefügt wurden, die die Zahl der Jumper reduzierten oder diese ersetzten.

Gleichwohl hatten die neueren Systeme eine negative Eigenschaft, die sie mit ihren früheren Vettern teilten: alles, was am Bus hing (außer der CPU), musste mit der gleichen Geschwindigkeit arbeiten. Da die CPU jetzt isoliert war und man ihre Geschwindigkeit ohne Probleme erhöhen könnte, stieg die Arbeitsgeschwindigkeit der CPUs und des Speichers fortlaufend viel schneller an, als die der Bussysteme, mit denen sie zusammenarbeiteten. Das Resultat war, dass die Busgeschwindigkeiten jetzt sehr viel langsamer waren, als für ein modernes System nötig, und die Maschinen hungerten nach Daten, weil sie viel schneller arbeiteten, als Daten hin und her transportiert werden konnten. Ein besonders typisches Beispiel für dieses Problem war, dass Videokarten sogar den neueren Bussystemen wie PCI schnell davonliefen. Jetzt benutzen Computer den AGP-Bus, einzig zu dem Zweck, die Videokarte sinnvoll betreiben zu können.

Während dieser Periode fing auch eine zunehmende Anzahl von externen Geräten an, ihre eigenen Bussysteme einzusetzen. Als die Laufwerke zuerst eingeführt wurden, hat man sie mit einer Einsteckkarte an den Bus angeschlossen. Das ist der Grund, warum Computer so viele mit dem Bus verbundene Slots haben. In den 1980er und 1990er wurden deswegen neue Systeme wie SCSI und IDE eingeführt, und so blieben die meisten Slots in den modernen Systemen leer. Heute gibt es in einem typischen PC an die fünf unterschiedlichen Bussysteme, um die verschiedenen Geräte zu betreiben.

Später ging man dazu über, das Konzept des lokalen Busses im Vergleich zum externen Bus zu bevorzugen. Ersteres bezieht sich auf Bussysteme, die entworfen wurden, um mit internen Geräten, wie Graphikkarten zu arbeiten, letzteres um externe Geräte wie Scanner anzuschließen. Diese Definition war immer ungenau: IDE ist der Verwendungsart nach ein externer Bus; er wird aber fast immer innerhalb des Computers zu finden sein.

Busse der "dritten Generation" sind jetzt im Kommen, einschließlich HyperTransport und InfiniBand. Sie haben gewöhnlich die Eigenschaft, dass sie mit sehr hohen Geschwindigkeiten laufen, die benötigt werden, um Speicher und Videokarten zu unterstützen, während auch niedrigere Geschwindigkeiten möglich sind, um die Kommunikation mit langsameren Geräten, wie Laufwerken zu unterstützen. Sie sind auch sehr flexibel, was ihre physikalischen Anschlüsse betrifft und lassen sich sowohl als interne Busse verwenden, als auch, um verschiedene Rechner miteinander zu verbinden.

Dieses kann zu komplizierten Problemen führen, wenn es darum geht, unterschiedliche Anfragen zu bedienen, was dazu führt, dass die Software im Vergleich zum eigentlichen Hardwaredesign in den Vordergrund rückt. Im Allgemeinen neigen die Busse der dritten Generation dazu, mehr wie ein Netzwerk als wie ein Bus (im traditionellen Verständnis) auszusehen, mit mehr Bedarf an Protokollinformationen als bei früheren Systemen, und der Möglichkeit, dass verschiedene Geräte den Bus gleichzeitig benutzen.

Beispiele für interne Computerbusse:

Parallel

Seriell

Beispiele für externe Computerbusse:

Parallel

Seriell

Siehe auch: Front Side Bus, Most-bus