Zum Inhalt springen

Diskussion:Goldener Schnitt

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 16. Juli 2004 um 19:47 Uhr durch Zwobot (Diskussion | Beiträge) (Head - Bot: Tabellensyntax konvertiert). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Der Abschnitt zur Buchkunst sollte nochmal verdeutlicht werden. Der Text darunter hat nichts mit dem Bild zu tun. Splatter 19:54, 29. Apr 2004 (CEST)

Goldener Schnitt und Euleresche Zahl

So heißt der Artikel auf meiner Webseite http://www.walter-orlov.ag.vu/

Ich versuche zu belegen, dass diese zwei Zahlen mieinander eng verwandt sind, und zwar als

tau = ~ sqrt(e)

Gruß Walter Orlov

Die Definition von rho ist falsch....

Bei der Berechnung der zweiten Lösung von ist nicht sondern

sollte eventuell korrigiert werden!

Ruhri 00:42, 18. Jun 2004 (CEST)

Oh, diese Bemerkung hier oben habe ich die ganze Zeit übersehen. Nach kurzem Nachdenken komme ich zu dem Schluss, dass wir auf die Erwähnung von ρ auch völlig verzichten können. Oder sieht jemand dessen Relevanz? --Wolfgangbeyer 20:45, 10. Jul 2004 (CEST)
Nö. ;-) -Hati 21:08, 10. Jul 2004 (CEST)


naja rein mathematisch ist die Zahl genauso relevant wie , da sie weitestgehend die gleichen Eigenschaften hat. Vor allem im Zusammenhang mit den allgemeinen Fibonacci-Zahlen (da bilden beide eine Basis für den Raum der allgemeinen FZ, was sich wiederum in der Binetformel niederschlägt). Was die Anwendungen ausserhalb der Mathematik betrifft, ist natürlich die positive Lösung stärker vertreten...
Ruhri 21:13, 10. Jul 2004 (CEST)
Ja sicher, wegen ρ=1/φ kommt ρ natürlich die gleiche Bedeutung zu wie φ. Ich fand nur ρ gerade deswegen eigentlich redundant, so dass wir es eigentlich hier nicht erwähnen müssen. --Wolfgangbeyer 01:07, 11. Jul 2004 (CEST)

Digitalbilder mit Goldenem Schnitt beschneiden

Tipp:

Die Bildbearbeitungssoftware 'FixFoto' - www.j-k-s.com - enthält bei ihrem Bildkanten-Beschneidewerkzeug eine zuschaltbare 'Goldener Schnitt'-Option. Beispiel:

FixFoto Screenshot Goldener Schnitt

MfG,

Ralf

Fünfzählige Blüten und Efeublatt

Ich würde gerne den Abschnitt über fünfzählige Blüten und das Efeublatt streichen, falls niemand protestiert. Eine fünfzählige Blüte enthält zwar ein Fünfeck, aus dem man natürlich ein Pentagramm konstrieren kann und damit auch den Goldenen Schnitt, aber es gibt ja keine zwei tatsächlich vorliegenden Strecken, die in diesem Verhältnis stehen würden. Und das Efeublatt ist eins der typischen Beispiele für willkürlich zusammengestellte Größenpaare, bei denen es zufällig ungefähr klappt: Da es mit den benachbarten Blattadern nicht funktioniert, hat an einfach eine übersprungen. Wenn man auf diese Weise systematisch die ganze Botanik durchforstet, lassen für jedes beliebige Zahlenverhältnis tausende von Beispielen finden. Eine Erwähnung hier wäre höchstens dann gerechtfertigt, wenn das Efeublatt in diesem Sinne eine historische Bedeutung hat. Die müsste aber dann klar herausgestellt werden. D. h. z. B. welcher bekannte Künstler hat wann und wo das Efeublatt als bedeutendes Beispiel für den Goldenen Schnitt in die Welt gesetzt, so dass es als bekanntes Beispiel dafür gilt, sofern es wenigstens das überhaupt ist. --Wolfgangbeyer 17:07, 5. Jul 2004 (CEST)

Hi, Wolfgangbeyer, Du bist mir zu schnell. Gut, seit 5.Juli hätte ich was dazu sagen können, aber ich "kämpfe" ;-) zur Zeit an mehreren Fronten. Mit dem Efeu magst du ja recht haben (obwohl es tatsächlich in der Volkskunst seine Bedeutung hat - frag mich aber nicht wofür). Aber sonst ist die Sache nicht so beliebig. Die 5-Zähligkeit bei Blüten ist gar nicht so häufig. Sie kommt nur bei relativ "modernen" Blütenpflanzen vor neben 6- und 4-Zähligkeit. (Ein große Zahl ist spiegelsymmetrisch.) Die Ursache ist eine Konkurrenz zwischen den Anlagen der Blütenorgane auf dem Wachstumskegel der Blüte. Diese Anlagen entstehen nacheinander, je schneller sie im Vergleich zum Kegel wachsen, desto weniger Anlagen haben nebeneinander Platz. Es gibt tatsächlich relativ wenig Pflanzenfamilien mit 5-zähligen radiärsymmetrischen Blüten. -Hati 17:49, 10. Jul 2004 (CEST)

gekippte Skizzen

@Wolfgangbeyer

Goldener Schnitt Konstruktion 4
Goldener Schnitt Konstruktion 5
Datei:GS3.jpg
Goldener Schnitt Konstruktion 6

Nicht dass ich meine Werke als besonders wertvoll halte oder unersetzlich. Mich hätte nur interessiert, warum sie herausgenommen wurden. Auf der Diskussionseite hätte das ruhig besprochen werden können. Hut ab vor deinen klaren und einfachen Konstruktionszeichnungen. Die alten empfinde ich nur persönlich ein bisschen spannender. Wäre es möglich die korrespondierenden Zeichnungen nebeneinanderzustellen? -Hati 18:38, 9. Jul 2004 (CEST)

Ja, entschuldige, dass ich das einfach kommentarlos rausgenommen habe. Das war wohl etwas überstürzt. Wollte niemanden verärgern. Da sie völlig kommentarlos platziert wurden, hatte ich angenommen, dass sich der Autor vielleicht nicht allzu sehr damit identifiziert ;-). Hatte schon vor, auf der Diskussionsseite darüber zu diskutieren. Werde bei Gelegenheit sowieso zu verschieden Punkten noch ein paar Fragen in den Raum stellen. Das Problem ist einfach, dass wir uns zahlenmäßig auf einige wenige der unermesslichen Fülle von Konstruktionen beschränken müssen. Ich finde, wir sollten nur solche vorstellen, zu denen es etwas besonderes zu sagen gibt. In diesem Sinne finde ich z. B. die momentane Nr. 3 schon kritisch, denn das mit der "äußeren Teilung" könnte man auch anhand der Nr. 4 erläutern. Von den 3, die ich rausgenommen hatte, ist die ehemalige Nr. 4 ja noch drin, nur in anderem Design. Die frühere Nr. 5 konnte ich mangels Erläuterung nicht nachvollziehen. Die Nr. 6 schon, aber da jeglicher Text dazu fehlte, stellte sich für mich die Frage, warum gerade diese darstellen, die ja auch zu den eher etwas aufwändigere zählt, insbesondere wenn man sie ausgehend von der zu teilenden Strecke durchführen will. Die ehem. Nr. 4 ebenso wie die Nr. 1 habe ich zugunsten der Einheitlichkeit durch eine eigene ersetzt. Was findest Du an Deinem Design spannender? Was verstehst Du unter "korrespondierende Zeichnungen nebeneinander stellen"? Zwei Zeichnungen zu einem Verfahren darstellen? Hm, das fände ich schon etwas üppig insbesondere, da der Artikel sowieso schon etwas länglich geraten ist. An meinen Darstellungen gefällt mir ganz gut, dass sie nur das nötigste darstellen, daher übersichtlich sind und ferner über die Symbole "1. " usw. auf die einzelnen Schritte hinweisen, ein Feature, dass ich von der ehem. Konstruktion Nr. 1 übernommen habe. Überlege mir noch, ob ich grafisch andeute, dass es Strecken gibt, die sich wie 2:1 verhalten. Vielleicht durch einen kleinen Teilstrich in der Mitte der längeren, so wie z. B. bei der jetzigen Nr. 4 am Punkt M. --Wolfgangbeyer 23:01, 9. Jul 2004 (CEST)
Sehe gerade, die Abbildung zur Buchdruckkunst ist ja auch von Dir. Ein ganz interessantes Thema, aber dazu brauchen wir unbedingt noch erläuternden Text. Kannst Du dazu was verfassen, oder mir irgend welche Quellen nennen? Ich kann die Konstruktion zwar nachvollziehen, aber ich verstehe nicht, wozu sie gut ist. Woher kommt das äußere Rechteck? Ist es ein Goldenes? --Wolfgangbeyer 23:12, 9. Jul 2004 (CEST)

Nullo Problemo! Ich habe mir überlegt ob ich Konstruktions-Algorithmen hinzufügen sollte. Ich hab mich dagegen entschieden, um dem Leser das selber Entdecken zu ermöglichen. Macht mir persönlich mehr Spaß. Zur Nr. 5: 3 Quadrate -> Diagonale über 2 Quadrate -> Winkelhalbierende - fertig. Eigentlich ist die Überschrift Buchdruckkunst nicht ganz richtig, es handelt sich eher um eine (gebräuchliche?) Layout-Methode ein Doppelseite zu strukturieren. Die Grundseite müsste das "normale" Seitenverhältnis (Folio etc.) darstellen. Das der Artikel sehr lang geworden ist stimmt. Und die Architektur fehlt noch so ziemlich vollständig. Vielleicht muss man doch einmal den Artikel teilen und das rein mathematisch-konstruktive gesondert vom künstlerisch-biologischen unterbringen. -Hati 16:36, 10. Jul 2004 (CEST)

Mit dem Seitenverhältnis der Grundseite verändert sich aber auch das der beiden kleineren Rechtecke und zwar proportional, wie man unmittelbar sieht, wenn man die ganze Konstruktion dehnt oder staucht, wobei sie ja nicht zerstört wird. Wenn nun aber die Grundseite ein "normales" Seitenverhältnis (was meinst Du damit?)besitzt, wo ist denn dann in der Zeichnung überhaupt ein Goldener Schnitt? So kommentarlos können wir's nicht stehen lassen, denn ich hatte schon vor, den Artikel in den Kandidaten für Exzellente Artikel noch mal zu präsentieren, und dann wird's dort diesbezüglich zu Recht ordentlich Proteste hageln ;-). --Wolfgangbeyer 18:57, 10. Jul 2004 (CEST)

Layout

Habe jetzt die Konstruktionsanweisung noch ergänzt. Bei Nichtgefallen ändern pder Löschen. -Hati 10:03, 11. Jul 2004 (CEST)

Interessantes Verfahren. Wirft für mich zahlreiche Fragen auf. Die wichtigste immer noch: Welches Seitenverhältnis hat das Außenrechteck? Wenn ich die ganze Konstruktion dehne oder strecke, mache ich ein 2:3:5:8 jedenfalls kaputt. Und der Goldene Schnitt selbst kommt offenbar nicht vor sondern nur diese Fibonacci-Zahlen. Von daher ist es die Frage, ob man es vielleicht besser nach Satzspiegel verschiebt. Der Satz Der Anfangspunkt kann aber auch geometrisch festgelegt werden hängt etwas in der Luft. Soll wohl bedeuten, das diese Wahl beliebt ist, oder war. Scheint sowieso eher was historisches zu sein. Ich habe jedenfalls kein solches Buch im Regal ;-). Ist es ein Zufall, dass die Parallele 7 durch den Schnittpunkt von 1 und 4 geht? Wenn sich diese Fragen nicht klären lassen insbesondere die erste, wäre ich eher für löschen. --Wolfgangbeyer 11:28, 11. Jul 2004 (CEST)
Habe noch mal nachgerechnet – da ist der Wurm drin: Bund- zu Außensteg verhalten sich wie 1:2 ebenso Kopf- zu Fußsteg. Siehtst Du sofort, wenn Du auf Rechenkästchen malst z. B. nur die linke Hälfte mit 12 Kästchen breit und 18 hoch, und für das innere Recheck z. B. 6x9. 12x18 habe ich gewählt, damit sich wenigstens für Bund- zu Kopfsteg 2:3 ergibt. Hast Du eine Internetquelle dazu? Bin lediglich einmal im Internet darauf gestoßen aber im Zusammenhang mit Fotografie, wobei genau diese Zeichnung allerdings völlig kommentarlos im Raum stand. --Wolfgangbeyer 12:27, 11. Jul 2004 (CEST)

(*Haarerauf*) Da gebe ich Dir recht. Also wenn, dann ab nach Satzspiegel. Oder irgendwo (hier oder dort) zwischenspeichern und auf gute Seele warten, die die Sache klärt. Welches Verhältnis haben dann zB Kopf- und Außensteg? Schade, dass ich nicht mehr in die Schule gehe ;-) Latein wäre das richtige, um sich damit zu beschäftigen. Quelle: muss irgend ein Begleitbuch zu QuarkXPress (Layout-Software) gewesen sein. Die Konstruktion scheint tatsächlch "klassisch" zu sein. Ich zitiere aus einm Fragment (S. 269) wörtlich: "Goldener Schnitt 2:3:5:8, Brauchbares Verhältnis 2:3:4:5" (*rätsel*) Über das Seitenverhältnis des Grundformats wird listigerweise nichts ausgeplaudert. Ichhabe den Verdacht, dass es kein Zufall ist, dass die Parallesl durch den Schnittpunkt 2/4 geht. -Hati 21:31, 11. Jul 2004 (CEST)

Ich denke man sollte es bei Satzspiegel unterbringen, denn selbst wenn die Mathematik ok wäre, sinds doch nur Fibonacci-Zahlen und kein Goldener Schnitt. Das Verhältnis benachbarter Stege hängt eben vom Seitenverhältnis der Grundseite ab. Nur das gegenüberliegender Stege ist fest 1:2. In meinem obigen Beispiel hat man also 2:3:4:6 statt der behaupteten 2:3:5:8. Ein Software-Handbuch ist natürlich vielleicht nicht die solideste Quelle, wie man sieht. Eben gerade fand ich einen sehr schönen erschöpfenden Artikel zum Thema nämlich http://people.freenet.de/kohm/markus/komasatzspiegel.pdf. Schau da mal rein. Der Autor stellt auch zuerst 2:3:4:6 und noch 3:4:6:8 vor, die beide über Deine Konstruktion möglich sind. 2:3:5:8 wird als seltener und weniger vorteilhaft dargestellt und muss anders konstruiert werden. --Wolfgangbeyer 23:51, 11. Jul 2004 (CEST)

Danke für die Recherche. Vorschlag: verschieben nach Satzspiegel/Diskussion. Ich werde mcih der Sache mal annehmen. Wird aber noch dauern. -Hati 08:36, 12. Jul 2004 (CEST)

Habe jetzt ein bisschen nachgegraben. Teilungsverhältnisse gibts viele, nur wenige werden als harmonisch empfohlen. Eines davon ist tatsächlich im goldenen Schnitt 1:1,6 bezogen auf die Seitenverhältnisse der Rechtecke die an den Ecken des Satzspiegels als Schnittflächen der Ränder entstehen. Für dieses Teilungsverhältnis ist keine Konstruktion angegeben. Wäre interessant, wie die aussehen könnte, wenn dazu gefordert wird, dass die Seitenverhältnisse des Satzspiegels gleich den Seitenverhältnissen der (einfachen) Seite sein sollen.-Hati 16:24, 12. Jul 2004 (CEST)