Wikipedia:Redaktion Physik/Qualitätssicherung
Alle Diskussionen, zu denen 45 Tage lang nichts beigetragen wurde, werden in die Archive für Unerledigtes verschoben. Wird der Baustein „Erledigt“ gesetzt ( |
Der Artikel ist im Vergleich zum englischen Artikel eher armselig. Insbesondere bleibt formelseitig unerklärt wie ein Druck z.B. in der Atmosphäre höhenabhängig sein kann, wenn man im Mechanischen Gleichgewicht ist. Das liegt an dem zusätzlichen externen Feld, welches die Gradientenkraft (Gradient im Druck) ausgleicht. Mag das jemand von euch ausbauen? Wäre wirklich schön zu sehen :) biggerj1 (Diskussion) 07:08, 10. Mai 2019 (CEST)
- Der Artikel ist tatsächlich sehr dünn. Es konzentriert sich sehr auf Beispiele, es fehlen allgemeine Informationen und jegliche formelmäßige Betrachtung. Ich hab den QS-Baustein gesetzt. --Cyberolm (Diskussion) 11:14, 10. Mai 2019 (CEST)
- Außerdem stellt er zwei verschiedene Begriffe dar. Einmal das Gleichgewicht eines Objekts in einem Medium wie Wasser oder Luft unter dem Einfluss der Schwerkraft (Abscnhnitte "Biologie" und "Mechanik"). Und dann noch die Schichtung des Mediums selbst unter dem Einfluss der Schwerkraft (Abschnitte "Astrophysik" und "Meteorologie"). Das sollte auf zwei Artikel aufgeteilt werden, mit einer Begriffsklärung als Weiche für die Leserschaft. ---<)kmk(>- (Diskussion) 13:34, 14. Mai 2019 (CEST)
- Eine gute Quelle finde ich Fluid Mechanics: Volume 6 (Course of Theoretical Physics S) von Landau und Lifshitz: http://users-phys.au.dk/srf/hydro/Landau+Lifschitz.pdf Das erste Kapitel zu idealen Fluiden ist recht aufschlussreich! biggerj1 (Diskussion) 14:45, 15. Mai 2019 (CEST)
- @-<)kmk(>-: Das ist mE ein- und derselbe Begriff, weil auch eine Schicht im Medium ein Objekt im Medium ist. --Bleckneuhaus (Diskussion) 14:59, 15. Mai 2019 (CEST)
- Eine gute Quelle finde ich Fluid Mechanics: Volume 6 (Course of Theoretical Physics S) von Landau und Lifshitz: http://users-phys.au.dk/srf/hydro/Landau+Lifschitz.pdf Das erste Kapitel zu idealen Fluiden ist recht aufschlussreich! biggerj1 (Diskussion) 14:45, 15. Mai 2019 (CEST)
- Außerdem stellt er zwei verschiedene Begriffe dar. Einmal das Gleichgewicht eines Objekts in einem Medium wie Wasser oder Luft unter dem Einfluss der Schwerkraft (Abscnhnitte "Biologie" und "Mechanik"). Und dann noch die Schichtung des Mediums selbst unter dem Einfluss der Schwerkraft (Abschnitte "Astrophysik" und "Meteorologie"). Das sollte auf zwei Artikel aufgeteilt werden, mit einer Begriffsklärung als Weiche für die Leserschaft. ---<)kmk(>- (Diskussion) 13:34, 14. Mai 2019 (CEST)
Aus der allgemeinen QS hierher überwiesen. Näheres siehe Artikel-Disk. --Innobello (Diskussion) 10:53, 13. Mai 2019 (CEST)
- Ich schließe mich der Diagnose von Ulfbastel an. Hier geht es um drei zwar eng benachbart auf einem die angesiedelte, aber immer noch physikalisch getrennte Festkörperlaser mit unterschiedlichen Farben. Wenn diese drei Festkörperlaser gleichzeitig und mit passender Intensität emittieren, erhält man für das menschliche Auge weiß erscheinendes Licht. Das ist aber immer noch Licht von drei unabhängigen Laserquellen. Das einen "weißen Laser" zu nennen, ist zwar ein wenig irreführend, kann man aber mit viel gutem Willen noch als Wissenschafts-Marketing-Trick durchgehen lassen. Damit das Ganze zu leuchten anfängt, haben die Original-Autoren es allerdings mit einem gepulsten UV-Laser gepumpt. Jo. So ein Kurzpuls-Laser im (nahen) UV ist auch knapp 60 Jahre nach der Erfindung des Lasers noch kein Gerät, das sich mal eben bei Amazon bestellt. Dazu braucht es auch noch eine Optik, die dafür sorgt, dass der Laser jeder Farbe getrennt die richtige Pump-Intensität bekommt. Das wars dann mit dem im Abschnitt "Mögliche Anwendungen" suggerierten breiten Einsatz in "Displays", oder als die Bandbreite erhöhenden Ersatz für WLAN. Schon gar nicht ist diese Art der Lichterzeugung in irgendeiner Weise effizienter als existierende Technologien zur Erzeugung von weiß erscheinendem Licht.
- Um es mit Ulfs Worten zu sagen: "(...) der ganze Schmus ist also marketingmäßig an den Haaren herbeigezogen."
- Wenn ich mir diese Unterseite des Hauptautors des Artikels anschaue, scheint es sich bei dem Artikel um das Ergebnis eines Uni-Seminars zu handeln. Wobei der Autor sich selbst eher fachfremd charakterisiert. Aus fachlich vorbelasteter Sicht kann ich nur sagen, das sieht man dem Artikel speziell in der vom Hauptautor eingestellten Version auch an. Alles nicht völlig falsch, in Summe aber doch Falsches suggerierend.
- Auch wenn das zentrale Missverständnis eines Lasers mit weißer Farbe mittlerweile durch Formulierungen von Summ und Ulf nicht mehr so wahrscheinlich eintritt, bleibt ein Problem: Beim "Weißen Laser" handelt es sich um keinen in der Fachliteratur etablierten Begriff. Da helfen auch keine Einmal-Artikel bei Golem oder die Texte der Presseabteilung der Arizona State University.
- Vor diesem Hintergrund schlage ich den Artikel zur Löschung vor. Was meint ihr? ---<)kmk(>- (Diskussion) 04:54, 14. Mai 2019 (CEST)
- Ich schließe mich konsequenterweise trotz meiner mühevollen Verbesserungsversuche an. Was machen wir mit dem Begriff (WL...) und dem Inhalt. Letzterer könnte bei OPSL erwähnt werden, das Lemma ist eben blöd besetzt durch die Werbung. Zu ersterem: Es gibt einen ziemlich weiß strahlenden Laser, der aber nicht so genannt wird (Ar+/Kr+ - Mischgaslaser mit mehreren zugleich schwingenden Linien). Wäre aber ziemlich mitleidig, das Lema so zu retten. --Ulf 15:26, 14. Mai 2019 (CEST)
- Ich war mal so frei und habe einen Löschantrag gestellt. Über eine Weiterleitung (wohin denn nur?) o.ä. müssen wir uns m.E. keine Gedanken machen. Gruß --Juesch (Diskussion) 20:28, 18. Mai 2019 (CEST)
- Ich schließe mich konsequenterweise trotz meiner mühevollen Verbesserungsversuche an. Was machen wir mit dem Begriff (WL...) und dem Inhalt. Letzterer könnte bei OPSL erwähnt werden, das Lemma ist eben blöd besetzt durch die Werbung. Zu ersterem: Es gibt einen ziemlich weiß strahlenden Laser, der aber nicht so genannt wird (Ar+/Kr+ - Mischgaslaser mit mehreren zugleich schwingenden Linien). Wäre aber ziemlich mitleidig, das Lema so zu retten. --Ulf 15:26, 14. Mai 2019 (CEST)
Zwei Sachen gefallen mir hier nicht:
- Die dielektrische Funktion wird mit der Clausius-Mossotti-Gleichung und dem Oszillatormodell hergeleitet, aber irgendwie fehlt da der Kontext. In die Clausius-Mossotti-Beziehung geht ja auch schon ein epsilon ein, also muss ja schon dafür eine Permittivität definiert sein.
- Im Abschnitt "Dielektrische Funktion" taucht ein "ex(t)" auf, und es ist völlig unklar was das sein soll.
129.13.72.197 13:44, 21. Mai 2019 (CEST)
- Ich habe Mal die Struktur verbessert. Bei der Permittivität kenne ich eine andere Herleitung (und habe sie so auch wieder gefunden), da taucht keine Verschiebung von omega auf (siehe Diskussionsseite). Mag das Mal jemand crosschecken? biggerj1 (Diskussion) 10:39, 23. Mai 2019 (CEST)
- Im Artikel gab es bisher zwar eine Überarbeiten-Box aber keine QS-Box. Ich habe gerade die richtige Box in den Artikel gesetzt. Die hiesige QS umfasst daher folgende Punkte:
- A) Die beiden oben eingestellten Punkte: A.1) Zusammenhang mit der Clausius-Mossotti-Gleichung, und A.2) was soll das "ex(t)" sein?
- B) Aus der alten Überarbeiten-Box: der Erstautor Andy G. hat noch am Tag der Erstellung auf der Artikel-Disk eine Liste noch fehlender Punkte erstellt, von denen folgende noch offen sind: B.1) Motivation ergänzen, und B.2) Bedeutung in Physik und Technik präzisieren.
- C) Auf der Artikel-Disk gibt es noch etliche weitere Punkte. Davon sind einige als "korrigiert" gekennzeichnet, andere hingegen scheinen definitiv noch offen zu sein.
- D) Unter #Mathematische Modellierung steht nach "wobei" die Liste der verwendeten Variablen offensichtlich in der Reihenfolge ihres Erscheines. Das könnte man dadurch verbessern, dass man da etwas Struktur reinbringt: a) Konstanten, b) äußeres Feld, c) die Auslenkung, für die die DGL gelten soll.
- Die hiesige QS sollte alle diese Punkte umfassen. --Dogbert66 (Diskussion)
- Im Artikel gab es bisher zwar eine Überarbeiten-Box aber keine QS-Box. Ich habe gerade die richtige Box in den Artikel gesetzt. Die hiesige QS umfasst daher folgende Punkte:
Ich habe im Artikel Klystron einen externen Link entfernt. Dieser verglich die Verstärkung eines Klystrons mit der Funktion einer Orgelpfeife. Schon der erste Satz ist eine physikalische Kostbarkeit: „In einem Klystron erzeugt eine Teilchenquelle Elektronen.“ Aha! Ich hab' mir schon immer gewundert, wo diese Viecher sich vermehren tun. Was ein Klystron mit einer Orgelpfeife zu tun hat, wird allerdings auf der Seite verschwiegen, ist auch nicht in den Animationen erkennbar. Zum Glück blieb der Wikipediaartikel von dieser Aussage verschont.
Nun hat diese Seite (solstice.de/grundl_d_tph/titelseite.html) den Anspruch, Teilchenphysik erklären zu wollen, allerdings mit lausigem Design. Es gibt in der WP aber noch mehr Einträge, deren Sinnhaftigkeit mir lediglich dieses Beispiels wegen suspekt sind (Suchergebnis). Inhaltlich mag ich das nicht überprüfen, dafür gibt es Spezialisten. MfG --≡c.w. @… 20:41, 30. Mai 2019 (CEST)
- Ich sehe nicht wirklich, dass die Seite den Anspruch hat, die Teilchenphysik wirklich tiefgreifend zu erklären. Sie will eher eine Auswahl an Einblicken bieten, die auch ganz ohne Vorwissen zugänglich sind. Dazu greift sie auf Konzepte und Umstände aus der Alltagswelt zurück. Es ist klar, dass diese Analogien immer nur Teilaspekte abdecken. Beim Orgelpfeifen-Vergleich zum Klystron ist es zum Beispiel das ansonsten nur über Formeln vermittelbare Konzept eines resonant schwingenden Mediums.
- Den Weblink sehe ich auch nicht als besonders hilfreich an. Insbesondere bietet er nicht wirklich einen Mehrwert gegenüber dem was der Artikel selber anbietet. Von daher ist eine Entfernung durch unsere Richtlinie WP:WEB gedeckt.
- Dieser Weblink war übrigens schon sehr lange im Artikel. Er wurde im Sommer 2005 mit diesem Edit eingebracht. Offenbar ist die Webseite einige Jahre später umgezogen, woraufhin die URL hier nachgezogen] wurde. ---<)kmk(>- (Diskussion) 03:56, 1. Jun. 2019 (CEST)
- Vielen Dank für die Bestätigung.
- Das Beispiel eines Blasinstrumentes als Anschauung für die Erzeugung von Schwingungen in einem Resonator wird oft in amerikanischer Literatur genutzt. Es hat den Nachteil, dass es dann und nur dann anschaulich ist, wenn der Leser weiß, wie in Blasinstrumenten die Erzeugung der Töne funktioniert. Das ist zumindest in Amerika nicht der Fall, aber auch die Pampers-Generation in Europa wird das nicht wissen. Hier weiß man höchstens, dass es irgendwie funktioniert, man hätte also ein Beispiel dafür, dass es auch bei einem Hohlraumresonator funktionieren könnte, wenn man einfach Luft daran vorbei bläst.
- Nur: bei einem Klystron soll nicht einfach nur eine Schwingung erzeugt, sondern ein Eingangssignals verstärkt werden, das sich sogar in gewissem Rahmen von der Eigenresonanz des Hohlraumresonators unterscheiden kann. (Selbst bei einem Klystron, das zur Schwingungserzeugung genutzt wird, wird durch das Klystron nur ein rückgekoppeltes Signals verstärkt.)
- Es gibt dafür wesentlich besseres Anschauungsmaterial (ich sage jetzt nicht, wo man dieses findet ;-). Wenn ein Elektron an dem Spalt eines Hohlraumresonators vorbei fliegt, nimmt es Einfluss auf die freien Elektronen im Material, weil sich gleiche Ladungen abstoßen. Erst werden die Elektronen aus der ersten Flanke des Spaltes verdrängt - wo fließen sie hin? Auf die andere Seite des Resonators! Dafür benötigen sie etwas Zeit, die von der Resonanzfrequenz des Resonators abhängt. Dann fliegt das anfangs betrachtete Elektron auch dort vorbei, dadurch werden sie auch von dort verdrängt, sie fließen zurück und schon entsteht im Resonator eine gedämpfte Schwingung, die so lange anhält, bis sich die Elektronen im Material wieder gleichmäßig verteilt haben.
- Und wenn nun nicht ein einzelnes Elektron vorbei fliegt, sondern ganze Elektronenbündel in jeweils genau den richtigen Abständen, dann entsteht schon eine recht kräftige Schwingung (gänzlich ohne Formeln).
- Gruß, --≡c.w. @… 19:47, 1. Jun. 2019 (CEST)
- @Charly Whisky: Danke für Deine Erläuterung am 1. Juni:
- Deinen ersten Beitrag hier in der QS hatte ich so verstanden, dass Du einerseits den Link entfernt hast, weil er Unkorrektes enthalten hat ("In einem Klystron erzeugt eine Teilchenquelle Elektronen"), zum anderen äußerst Du, dass Du froh bist, dass der Orgelpfeifenvergleich nicht auf der Seite erwähnt wird. Als Grund für den zweiten Punkt hatte ich beim damaligen Lesen angenommen, dass der Vergleich falsch sei.
- Danke, dass Du nun erläuterst, dass der Vergleich tatsächlich möglich ist und in der "amerikanischen Literatur" sogar verwendet wird, dass er aber den Nachteil hat, dass er einen Leser nur verwirrt, wenn dieser nicht weiß, wie eine Orgelpfeife funktioniert. Persönlich glaube ich sogar, das Prinzip daraus verstanden zu haben, wie Du es in Deinem Beitrag andeutest.
- Daher unabhängig davon, ob das dann im Artikeltext wirklich erwähnt wird, meine Frage: kannst Du bitte einen guten Link aus der "amerikanischen Literatur" nennen, in dem die Analogie zwischen Klystron und Orgelpfeife verständlich dargestellt wird. Das wäre durchaus eine sinnvolle Ergänzung der Weblinks. --Dogbert66 (Diskussion) 13:31, 9. Jun. 2019 (CEST)
- Ich fürchte nur, dass solche Literaturbeispiele für diesen Zweck kaum verwendbar sind, da sie nur das „dass“ beschreiben und nicht das „wie“, z.B.: [1] [2] [3].
- Solange nur das Resonanzverhalten verglichen wird ist nichts dagegen zu sagen (große Abmessungen → tiefe Töne/Frequenzen; kleine Abmessungen → höhere Töne/Frequenzen, z.B.: [4] und auch in [en:wiki]), jedoch halte ich Vergleiche des Entstehens der Schwingung zwischen Orgelpfeife und Hohlraumresonator in einer Laufzeitröhre sehr fragwürdig.
- Zur Frage der Verwendbarkeit in einem Wiki-Artikel: Es wäre schön, wenn ein klassischer Physiker in Helmholtz-Resonator nicht nur die Resonanzfrequenz berechnen lässt, sondern die energetischen Vorgänge bei der Entstehung der Frequenz zu Beginn des Anblasens beschreiben könnte (also den Übergang vom lautlosen Ruhezustand zur tönenden Resonanz). Das ließe sich dann durchaus vergleichen mit den Elektronen (als Ladungsträger), die an einem Spalt vorbei fliegen. Jedoch halte ich diesen Vergleich dann zwar als für Fachleute sehr interessant, aber didaktisch (jedenfalls für „omA“) kaum wirksam. --≡c.w. @… 11:17, 18. Jun. 2019 (CEST)
Vollständig unverständlich. --Dergi (Diskussion) 04:05, 3. Jun. 2019 (CEST)
- Im Artikel finden sich verschiedene Formelzeichen für den gleiche Größe z.B. Frequenz.
RSchnabel 19:16, 13. Juni 2019 (CEST): Das ist natürlich sehr schade, denn dieser Text basiert auf vielen Jahren Erfahrung durch Universitätsvorlesungen zum Thema Gequetschtes Licht :) . Ich vermute, dass Dergi den Text nicht richtig gelesen hat. Die obige Kritik bzgl. Formelzeichen ist zum Beispiel unsinnig: Es gibt in der Tat zwei unterschiedliche Zeichen für die Frequenz, weil es sich einmal um die optische Frequenz handelt, das andere Mal um die Seitenbandfrequenz. Leider ist die Kritik von Dergi auch in seinem folgenden Text sehr unsachlich, so dass ich die Kritik nicht nutzen kann, um meinen Artikel zu verbessern.
Dergi schrieb weiter:
- Es wird auf Modulationsverfahren Modulation (Technik) verwiesen allerdings wird der Zusammenhang nicht sauber hergestellt.
- Aus meiner Sicht müsste insgesamt auf die Signaltheorie verwiesen werden. Was hat die Rausch oder Fluktuationsunterdrückung mit bekannten Verfahren wie z. B. Rauschunterdrückungsverfahren oder Dolby zu tun? Handelt es sich bei den nichtlinearen Elementen eventuell um Mischer (Elektronik), so sollte nicht nur "LO" Verwendung finden, sondern auch ein Bezug darauf was gemischt wird und warum. Ich als Nachrichtentechniker mit QED Hintergrund konnte nur in ungefähr feststellen, dass sich das Verfahren im obigen Dunstkreis bewegen müsste. Oder wird eventuell doch noch sowas wie Spreitzband Technologie Wideband CDMA eingesetzt?--Dergi (Diskussion) 04:17, 3. Jun. 2019 (CEST)
- Sind Quadraturamplitudenmodulation und Amplitudenquadratur aus dem Artikel verwand?--Dergi (Diskussion) 04:45, 3. Jun. 2019 (CEST)
- Es wird auf Schrotrauschen verwiesen. Hierin gibt es die Aussage:"Da dieses Rauschen nicht durch technische Maßnahmen unterdrückt werden kann, wird auch die Bezeichnung Schrotrauschgrenze verwendet." es wird nich deutlich herausgehoben, ob der Vorgang des Quetschen tatsächlich die Schrotrauschgrenze verschiebt.--Dergi (Diskussion) 04:55, 3. Jun. 2019 (CEST)
- Was ist "Abkonversion" verwand mit dem englischen Up-conversion?.........und so weiter--Dergi (Diskussion) 05:05, 3. Jun. 2019 (CEST).
- Was ist Pumplicht?--Dergi (Diskussion) 23:44, 3. Jun. 2019 (CEST) . Was ist Abkonversion vom Typ I?--Dergi (Diskussion) 23:53, 3. Jun. 2019 (CEST).
- "Das Trägerfeld kann, muss aber nicht in den Kristall gestrahlt werden." - entspricht diese einer Amplitudenmodulation mit unterdrücktem Trager?--Dergi (Diskussion) 23:59, 3. Jun. 2019 (CEST)
- Was ist Pumplicht?--Dergi (Diskussion) 23:44, 3. Jun. 2019 (CEST) . Was ist Abkonversion vom Typ I?--Dergi (Diskussion) 23:53, 3. Jun. 2019 (CEST).
- Was ist "Abkonversion" verwand mit dem englischen Up-conversion?.........und so weiter--Dergi (Diskussion) 05:05, 3. Jun. 2019 (CEST).
- Es wird auf Schrotrauschen verwiesen. Hierin gibt es die Aussage:"Da dieses Rauschen nicht durch technische Maßnahmen unterdrückt werden kann, wird auch die Bezeichnung Schrotrauschgrenze verwendet." es wird nich deutlich herausgehoben, ob der Vorgang des Quetschen tatsächlich die Schrotrauschgrenze verschiebt.--Dergi (Diskussion) 04:55, 3. Jun. 2019 (CEST)
- Sind Quadraturamplitudenmodulation und Amplitudenquadratur aus dem Artikel verwand?--Dergi (Diskussion) 04:45, 3. Jun. 2019 (CEST)
Was mir auffällt:
- Der Abschnitt "Quantenphysikalischer Hintergrund" verrät nicht wirklich etwas zum Zusammenhang mit der Quantenmechanik.
- Im Abschnitt "Quantenphysikalischer Hintergrund" wird nicht klar, was genau mit "Phase" gemeint ist. Einerseits ist das nicht trivial. Andererseits ist die Phase einer der Schlüsselbegriffe des Artikels. Ohne ein Verständnis an dieser Stelle, bleibt das ganze Konzept unverständlich.
- Der Abschnitt "Quantenphysikalischer Hintergrund" wechselt im dritten Drittel unvermittelt zur Darstellung eines Aufbaus. Diese Darstellung beginnt eher abstrakt im Stil eines Gedankenexperiments. Gegen Ende werden sogar konkrete Parameter wie "eine Million Messwerte" genannt. Den Sinn und Zweck dieses Aufbaus muss man zwischen den Zeilen lesen.
- Der Abschnitt "Quantitative Beschreibung der (gequetschten) Unschärfe" gibt in der ersten Häfte mit der Unschärferelation die Verbindung zur Quantenmechanik an. Er folgt dabei der Darstellung, wie ich sie aus Vorlesungen und Büchern kenne. Auch hier sollte eine Erklärung der in den Formeln verwendeten Größen ergänzt werden.
- In der zweiten Hälfte wechselt die "Quantitative Beschreibung der (gequetschten) Unschärfe" erst zu einer Aussage, wie Squeezed Light experimentell hergestellt wird. Dann schwenkt er wieder zur eher theoretischen Definition, was unter dem Quetschfaktor zu verstehen ist.
- Bei den Graphen in der Galerie am Ende von "Quantitative Beschreibung der (gequetschten) Unschärfe" bleibt unklar, was da gegen was aufgetragen ist. An dieser Stelle vermisse ich einen Verweis auf die Wignerfunktion.
- Die Aussagen im ersten Teil des Abschnitts "Physikalische Bedeutung von Messgröße und Messobjekt" sind zwar nicht falsch. Sie wirken aber als etwas unstrukturiert aneinander gereiht. Außerdem wird nicht immer deutlich, warum etwas so ist wie es ist. Zum Beispiel wüsste ich gern, warum es nötig ist, dass die Zeitabschnitte identische Längen haben müssen.
- Der letzte Absatz des Abschnitt "Physikalische Bedeutung von Messgröße und Messobjekt" zieht ohne Beleg und explizite inhaltliche Begründung eine Analogie zur Amplitudenmodulation, Frequenzmodulation. Daraus folgert er, dass gequetschtes Licht "eine Vielzahl von Anwendungen in der optischen Kommunikation und in der optischen Messtechnik (hat)." Zumindest diese letzte Aussage würde ich so nicht unterschreiben. Soweit ich weiß, gibt es bis jetzt erst eine reale technische Anwendung von gequetschtem Licht. Das ist der weiter hinten im Artikel zutreffend dargestellte Einsatz bei Gravitationswellendetektoren, insbesondere bei GEO600, LIGO und VIRGO. Und auch das hat einen erheblichen Aufwand zur Entwicklung gebraucht. Es hat schon seinen Grund, dass diese Technik erst mit Upgrades vor wenigen Jahren geschah, obwohl schon seit den Neunzigern von den Vorteilen von gequetschtem Licht die Rede war.
- Der Abschnitt "Optische Präzisionsmessungen" stellt ausschließlich die Anwendung bei Gravitationswellendetektoren dar. Das ist ok, weil es ja die einzige tatsächlich umgesetzte Anwendung von Squeezed Light ist. Allerdings sollte die Überschrift dem Inhalt angepasst werden.
- Die Aussagen im Abschnitt "Optische Präzisionsmessungen" sehen soweit korrekt aus. Ich würde nur hier und da an den Formulierungen schrauben. So wird im Moment etwa das Problem der Rückwirkung des Laserlichts auf den Bewegungszustand der Spiegel durch das gequetschte Licht "gelöst". Tatsächlich ist diese Rückwirkung trotzdem vorhanden und weiterhin einer der Mechanismen, die die Empfindlichkeit des Detektors begrenzen.
- Der Abschnitt "Radiometrie/Kalibrierung von Photodetektoren" stellt zwar dar, dass man mit gequetschtem Licht eine Aussage über die Quanteneffizienz eines Photodetektors erhalten kann. Als Leser vermisse ich allerdings Aussagen dazu, warum das ein Problem ist, für das es sich lohnt, so eine Kanone von Messkonzept einzusetzen.
- Im Abschnitt "Verschränkungsbasierte Quantenschlüsselverteilung" vermisse ich den ausdrücklichen Hinweis, dass es sich hier anders als bei der Anwendung in Gravitationswellendetektoren bisher lediglich um ein Proof-of-Principle handelt. Vor diesem Hintergrund empfinde ich den Abschnitt als deutlich zu lang in Relation zu den anderen.
- Der Text im Abschnitt "Herstellung von gequetschtem Licht" kommt mir beim Überfliegen soweit in Ordnung vor.
- Eins fiel mir bei der Herstellung auf: "Diese Prozesse können gut graphisch veranschaulicht werden. Siehe dazu Referenz.<ref ... />" -- diese Veranschaulichung sollten wir hier im Artikel leisten.
- Der Artikel stützt sich stark auf die Arbeiten von Roman Schnabel. Zwar ist Roman Schnabel unbestritten einer der führenden Köpfe bei der Entwicklung der Technik einschließlich der Anwendung bei Gravitationswellendetektoren. Es gibt aber auch noch den einen oder anderen wichtigen Autor. Siehe dazu auch die Einzelnachweise im englischen Parallelartikel.
- Die Kategorien "Signalverarbeitung", "Digitale Signalverarbeitung", "Nachrichtentechnik" und "Modulation (Technik)" kann ich nicht ganz nachvollziehen. Sicher, es steckt ein Körnchen Wahrheit darin. Aber auch nicht mehr als ein Körnchen. Ich würde es bei "Quantenoptik" und "Rauschen" belassen.
---<)kmk(>- (Diskussion) 04:18, 4. Jun. 2019 (CEST)
- Naja, Amplitudenmodulation und Frequenzmodulation sind eindeutig in der Signalverarbeitung und Modulation verwendete Verfahren. Nach intensivem Lesen des Artikels stellt sich das Ganze für mich so dar: Nach den von mir gehörten Vorlesungen, verwendet man für die Erzeugung von Lasern "Leitungen" mit negativer Dämpfung, die durch (halbdurchlässige) Spiegel mehrfach durchlaufen werden. Eine negative Dämpfung ist eine Verstärkung. Im Sinne der Signaltheorie ist ein Laser somit ein Oszillator mit angeschlossenem Verstärker. Siehe Laser#Funktionsweise Arbeitet man nun mit mehreren Frequenzen und nichtlinearen Kennlinien ist diese in Sinne der Signaltheorie ein Mischer. Somit lässt sich das System signaltheoretisch beschreiben. Entsprechende Referenzen auf die Modulationsverfahren sind ebenfalls vorhanden. Warum der Artikel somit micht entsprechend kategorisiert werden sollte ist mir nicht verständlich. Allerdings zeigt diese Diskussion auch, die Qualität des Artikels: Er ist extrem schwer verständlich und äußerst interpretationsfähig.--Dergi (Diskussion) 23:29, 4. Jun. 2019 (CEST)
- Wenn ich mir das recht überlege, reduziert ein elekronischer Verstärker, der in die Kompression getrieben wird, alle Signale auf allen Frequenzen um das Maß der Kompression - und somit auch das Rauschen. Die Worte Kompression und Quetschen liegen recht nahe beieinander. Sollte somit ein Quetsch-Laser aus signaltheoretischer Sicht lediglich ein stark in die Kompression getriebenes Lasersystem sein. Dann wäre die Beschreibung äußerst umständlich...--Dergi (Diskussion) 00:02, 5. Jun. 2019 (CEST)
- Naja, Amplitudenmodulation und Frequenzmodulation sind eindeutig in der Signalverarbeitung und Modulation verwendete Verfahren. Nach intensivem Lesen des Artikels stellt sich das Ganze für mich so dar: Nach den von mir gehörten Vorlesungen, verwendet man für die Erzeugung von Lasern "Leitungen" mit negativer Dämpfung, die durch (halbdurchlässige) Spiegel mehrfach durchlaufen werden. Eine negative Dämpfung ist eine Verstärkung. Im Sinne der Signaltheorie ist ein Laser somit ein Oszillator mit angeschlossenem Verstärker. Siehe Laser#Funktionsweise Arbeitet man nun mit mehreren Frequenzen und nichtlinearen Kennlinien ist diese in Sinne der Signaltheorie ein Mischer. Somit lässt sich das System signaltheoretisch beschreiben. Entsprechende Referenzen auf die Modulationsverfahren sind ebenfalls vorhanden. Warum der Artikel somit micht entsprechend kategorisiert werden sollte ist mir nicht verständlich. Allerdings zeigt diese Diskussion auch, die Qualität des Artikels: Er ist extrem schwer verständlich und äußerst interpretationsfähig.--Dergi (Diskussion) 23:29, 4. Jun. 2019 (CEST)
- Das Schlüssel-Gerät für die Herstellung von gequetschtem Licht ist kein Laser, sondern ein Optisch Parametrischer Oszillator (OPO). Ein OPO verhält sich zu einem Laser in etwa so wie ein Getriebe zu einem Motor.
- "Abkonversion" ist die Eindeutschung von "down conversion". Anders als bei der Kompression von elektrischen Signalen durch den Betrieb von Transistoren nahe der Sättigung treten bei der Abkonversion im Ausgang Frequenzen auf, die als nach unten verschobene Frequenzen des Eingangs interpretiert werden können.
- Ein zentrales Thema beim gequetschten Licht ist, dass das gesamte Rauschen nicht reduziert wird. Vielmehr wird etwa das Phasenrauschen reduziert während im Gegenzug das Amplitudenrauschen stärker wird.
- Das "Quetschen" umschreibt keine Kompression. Viemehr bezieht es sich auf die Verformung der Fläche, die das System im Phasenraum einnimmt. Wegen der Heisengerschen Unschärferelation ist diese Fläche für "normales" Licht kreisförmig. Bei gequetschtem Licht wird diese Fläche bei gleichbleibendem Flächeninhalt zu einer Ellipse verformt. Diese Verformung ist das "Quetschen".
- Mit (elektrischer) Signalverarbeitung hat das alles recht wenig zu tun.
Die Punkte sind was für die Diskussionsseite. Ob allgemeinverständlich oder nicht, jedenfalls ist jetzt ein Artikel da, der schon lange auf der Liste der Fehlenden stand.--Claude J (Diskussion) 07:58, 4. Jun. 2019 (CEST)
- @Dergi, KaiMartin, Claude J, RSchnabel: Ich hätte hier die große Bitte an Euch, Eure neuen Beiträge bitte immer unten ans Ende der Diskussion zu setzen.
- Ich versuche mal, den bisherigen Diskussionverlauf zu skizzieren:
- Dergi hat am 3. Juni 2019, 05:26 die Diskussion gestartet (Kritikpunkt "unverständlich") und bis 3. Juni 2019, 23:33-23:59 Punkte aufgelistet, worin die Unverständlichkeit des Artikel seiner Meinung nach besteht.
- KaiMartin listet am 4. Juni 2019, 04:19-04:46 auf, was ihm am Artikel auffällt.
- Claude J begrüßt am 4. Juni 2019, 07:58 die Existenz des Artikels. (Claude Js Vorschlag, die Diskussion auf der Artikeldisk weiterzuführen, teile ich nicht, da durch KaiMartins Beitrag klar wird, dass Dergis Kritikpunkt der Artikel-Unverständlichkeit nicht (nicht nur?) subjektiv ist (ich als Leser habe da etwas nicht verstanden), sondern durchaus objektiv (der Artikel ist nicht klar genug).)
- Dergi geht am 4. Juni 2019, 23:29-23:44 auf einen Punkt von KaiMartin ein, und stellt am 5. Juni 2019, 00:02 eine weitere Frage.
- RSchnabel bedauert am 13. Juni 2019, 19:37 Dergis Verständnisproblem, bittet aber um genauere Kritikpunkte (@RSchnabel: Wobei sich mir die Frage stellt: hast Du KaiMartins Punkte bei Deinem Beitrag übersehen?)
- KaiMartin antwortet am 14. Juni 2019, 00:51 wohl direkt auf die beiden davorstehenden Beiträge von Dergi.
- Zusammenfassend sehe ich hier als Qualitätssicherungspunkte insbesondere KaiMartins Liste von Kritikpunkten vom 4. Juni 2019, 04:19-04:46. Auch wenn RSchnabel wesentlicher Autor des Artikels ist, so ist er nicht alleiniger Autor: zu KaiMartins sechstem Punkt ("Bei den Graphen in der Galerie ... Verweis auf die Wignerfunktion") spreche ich Benutzer:Geek3 direkt auf seiner Diskussionsseite an. Bei der Klärung von KaiMartins Kritikpunkten sollte insbesondere auch auf Dergis Fragen eingegangen werden. --Dogbert66 (Diskussion) 11:06, 14. Jun. 2019 (CEST)
- Neue Beiträge sollten nicht pauschal ans Ende der Diskussion gesetzt werden. Vielmehr sollten sie direkt unter dem Beitrag stehen, auf den sie sich beziehen und um eine Einheit weiter nach rechts eingerückt werden. Siehe dazu die Konventionen für die Benutzung von Diskussionsseiten, 5. Punkt und die Hilfe:Diskussion gliedern.
- Was die obige Diskussion in der Tat schwer nachvollziehbar macht, ist der Beitrag von RSchnabel, der ohne Einrückung mitten in den Beitrag von Dergi geschoben wurde. Außerdem beginnt dieser Beitrag mit der Signatur statt mit ihr anzuschließen. ---<)kmk(>- (Diskussion) 14:42, 16. Jun. 2019 (CEST)
Ich habe den Text soeben nochmal gelesen und Verbesserungen vorgenommen. Das alte Bild mit Darstellungen der Wigner-Funktion habe ich entfernt, da die Quadraturen dort inkonsistent benannt waren. Ich habe es durch ein neues Bild ersetzt. Nach meinem Eindruck sollte der Artikel verständlich sein. RSchnabel 19:17, 16. Juni 2019 (CEST).
Klärungsbedarf bzw. Nachfrage nach weiteren unabhängigen Meinungen.
Es geht um eine verbesserte Strukturierung einiger Artikel und Weiterleitungsseiten im Bereich der Thermodynamik. Ganz konkret geht es um Unterkategorien von Physikalisches System bzw Thermodynamisches System und hier wiederum um zwei unterschiedlichen Meinungen zum Lemma Geschlossenes System. Die Diskussion wurde 2019-05-20 auf Diskussion:Thermodynamisches_System begonnen. Zur Vermeidung von Konfusionen wird ein anderer Aspekt dieser Diskussion hier auf der Q-Seite im nächsten Abschnitt #BilanzgleichungenGeschlThermSystem angesprochen.
Übersicht über die aktuelle (2019-06-06) Struktur der betroffenen Artikel.
Bereich | System | Nach Wechselwirkung | |||
---|---|---|---|---|---|
Allg. Sprachgebr. | System_(Begriffsklärung) | .. | .. | .. | |
Allg Physik | Physikalisches System | Offenes System | Geschlossenes System ?fraglich? | Abgeschlossenes System | |
Synonyme | – | – | – | Isoliertes System | |
Einschränkung auf Thermodynamik | Thermodynamisches System | Offenes System (Thermodynamik) WL | Geschlossenes System (Thermodynamik) WL | Abgeschlossenes System (Thermodynamik) WL |
Die Artikel Offenes System und Abgeschlossenes System bestehen aus Aufzählung von Definitionen des Begriffs in verschiedenen Fachgebieten, eine Art Begriffsklärungsseite. Die Artikel *(Thermodynamik) sind Weiterleitungsseiten auf Thermodynamisches System. Da sich die Attribute offen, geschlossen, abgeschlossen eigentlich in kurzen Sätzen dort definieren lassen.
Der Begriff Geschlossenes System wird für Thermodynamische System häufig gebraucht. Er scheint m.E. aber nicht für allgemeine physikalische System üblich zu sein, zumindest habe ich in drei verschiedenen Fachlexika – Physik Brockhaus, Biologie Spektrum Verlag, Lexikon für Technik und Naturwissenschaften – den Begriff nur in Verwendung mit der Thermodynamik gefunden. Möglicherweise wird er aber auch für ein allgemeines System synonym für abgeschlossene Systeme verwendet. Wie der Begriff in Physikalisches System genau gemeint und belegt wird, erschliesst sich mir nicht. Wer weiß hier mehr bzw. kennt hier geeignete Literatur? Im Moment gibt es auf den Artikel Geschlossenes System interne Verweise, die darauf hindeuten, dass dort der Begriff eher synonym zu abgeschlossenen System gemeint ist.
Die folgenden Änderunge würden nach meiner Meinung die Situation verbessern:
- Der Inhalt von Geschlossenes System kommt nach Geschlossenes System (Thermodynamik) oder wird in den Abschnitt Geschossenes System innerhalb vom Thermodynamischen System eingearbeitet.
und
- Geschlossenes System wird wieder zu einer Weiterleitungsseite auf Abgeschlossenes System – oder alternativ:
- In allen Artikeln, die aktuell (2019-06-06) auf Geschlossenes System verweisen, wird der Verweis auf Abgeschossenes System geändert.
Ich bitte hier um eine dritte Meinung oder andere Lösungsvorschläge, um diesen Arbeitspunkt abschließen zu können. ArchibaldWagner (Diskussion) 07:18, 7. Jun. 2019 (CEST)
- Ich habe die bisherige Diskussion nur kurz überflogen. Folgende Anmerkungen hätte ich:
- Man kann "Abgeschlossenes System" zu einer Weiterleitung auf "Geschlossenes System" machen weil es quasi ein Spezialfall davon, andersherum halte ich es für falsch.
- Außerhalb der Thermodynamik wird "Abgeschlossenes System" bzw. "Isoliertes System" normalerweise "Inertialsystem" genannt. Man kann zeigen dass die Begriffe äquivalent sind, vgl. Rana & Joag: Classical Mechanics. Tata McGraw-Hill Education, 2001, ISBN 0-07-460315-9 (eingeschränkte Vorschau in der Google-Buchsuche). (wobei dort von "closed system" gesprochen wird). Die Unterscheidung mit und ohne Energieaustausch wird dagegen nur in der Thermodynamik gebraucht.
- --Debenben (Diskussion) 08:02, 24. Jun. 2019 (CEST)
BilanzgleichungenGeschlThermSystem
Neben der kurzen Definition in Geschlossenes System bzw. in Thermodynamisches System finden sich dort einige Bilanzgleichungen für die Energie (und die Entropie) für ein solches System. Nun finden sich diese oder ähnliche Gleichungen auch hier Erster_Hauptsatz_der_Thermodynamik#Energiebilanz_für_das_geschlossene_System und hier Thermodynamik#Bilanz_für_das_geschlossene_thermodynamische_System. Damit stellt sich die Frage: soll diese Redundanz so bleiben, oder soll diese Information möglicherweise nur an einer Stelle stehen und wenn ja, wo?
In Thermodynamikbüchern für Ingenieure wie dem von H.D.Baer und S.Kabelac werden die Bilanzbetrachtungen für ein geschlossenes und ein offenes thermodynamisches System jeweils ausführlich in eigenen Unterabschnitten abgehandelt. Dabei stehen dann nicht nur die nackten Formeln da, sondern sie werden an ein oder zwei Beispielen und Grafiken ausfürlich besprochen, womit sie viel leichter verständlich werden. Eine solche Abhandlung könnte etwa in Geschlossenes System (Thermodynamik) an Stelle der jetzigen Weiterleitung stehen. Aber dieses müsste erst einmal erarbeitet werden. ArchibaldWagner (Diskussion) 07:21, 7. Jun. 2019 (CEST)
Der Impuls von Feldern wird nicht wirklich angeführt. --biggerj1 (Diskussion) 19:21, 7. Jun. 2019 (CEST)
- @Biggerj1: Nunja, unter #Elektromagnetisches Feld wird auf den Energie-Impuls-Tensor verwiesen, wo nicht nur das elektromagnetische Feld, sondern auch Relativitätstheorie und Hydrodynamik mitbehandelt werden. Und unter #Impuls in der Quantenmechanik wird auf den Impulsoperator verwiesen. Das ist zugegebenermaßen nicht sehr viel, aber: um was für Felder geht es Dir denn konkret? Was vermisst Du? --Dogbert66 (Diskussion) 14:30, 9. Jun. 2019 (CEST)
- Hmm, ich hatte den Link auf Energie-Impuls Tensor eingebaut weil der Inhalt unter Impuls gar nicht auftauchte. Vielleicht können wir hier mehr schreiben als nur ein siehe auch? LG biggerj1 (Diskussion) 22:40, 10. Jun. 2019 (CEST)
Ich schiebe das mal aus der allgemeinen WP:QS zu den Profis. Originalantragstext war:
Es werden im Artikel undefinierte variablen verwendet (g). --Verrain (Diskussion) 15:01, 17. Jun. 2019 (CEST)
--Jb31 (Diskussion) 00:07, 18. Jun. 2019 (CEST)
- Es ist die Bildweite b und die Gegenstandsweite g. Habe es ergänzt. biggerj1 (Diskussion) 07:07, 18. Jun. 2019 (CEST)
- ... und ich hab das Bild ergänzt - Bilder sind in der geometrischen Optik immer hilfreich. Ich hoffe, dass das ok ist; und dass nun alle Leser zufrieden sein können ... --Haraldmmueller (Diskussion) 09:11, 18. Jun. 2019 (CEST)
--Der Artikel im vorherigen Zustand war größtenteils einfach nur aus https://physik.cosmos-indirekt.de/Physik-Schule/Bessel-Verfahren übertragen gewesen. Auf alle Fälle ist es gut, dass die undefinierte Variable nun verdeutlicht wurde. Allerdings überschneiden sich beide Grafiken thematisch stark und sind größtenteils redundant (bis eben auf die fehlende Information zur Variablen g). Vielleicht kann der Artikel ja im ganzen überprüft werden, um eine gemeinsame Darstellung zu erzeugen. Weiterhin hat der Artikel bisher nur wenige Verbindungen zu anderssprachigen Wikis (nicht einmal in die englische Wiki). Er ist auch schlecht findbar, wenn in der Wikisuchmachine nach "besselschen Verfahren" o.ä. gesucht wird. Vielleicht kann da auch noch eine Weiterleitung erstellt werden. Dies waren die Punkte, die mir aufgefallen sind. Vielleicht findet ihr noch weitere. Viele Grüße --Verrain (Diskussion) 10:44, 18. Jun. 2019 (CEST)
- Ne, der Artikel auf Cosmos-Indirekt war von Wikipedia übertragen worden. Die fehlenden Verbindungen zu anderssprachigen Wikis kann man nur beheben, indem man in den anderen Wikis Artikel schreibt. WL von Besselsches Verfahren wird sogleich angelegt. Die beiden Grafiken sind mE nicht gänzlich redundant, da in der obigen die Positionen der verschiedenen Linse samt für das Bessel-Verfahren nötigen Größen angegeben werden, in der unteren die allgemeinen Größen für die geometrische Optik. Beide zusammenzulegen würde vermutlich die Grafik überborden. Damit erledigt? --Blaues-Monsterle (Diskussion) 12:02, 18. Jun. 2019 (CEST)
- Naja, es gibt schon schönere Darstellungen. Z.B. im Schenk, 13. Aufl., Kapitel Optik und Atomphysik Abschnitt 1.1 (https://www.springer.com/de/book/9783658006655) Aber wenn euch das so reicht, dann kann die Marke kann wieder weg und der Abschnitt hier kann geschlossen werden. Erstaunlich, dass es dazu echt keinen Artikel in der englischsprachigen Wiki gibt. Die Brennweite einer Sammellinse zu bestimmen, scheint mir ja doch eigentlich recht elementar zu sein ^^. Grüße --Verrain (Diskussion) 17:21, 18. Jun. 2019 (CEST)
Hartmagnetische Werkstoffe
Eine kurze Frage zu einem Text im Artikel Magnetwerkstoffe. Dort heißt es: "Hartmagnetische Werkstoffe (Dauermagnete) besitzen sehr hohe Koerzitivfeldstärken, und setzen äußeren Magnetfeldern dementsprechend einen hohen Widerstand entgegen. Eine Ummagnetisierung (bzw. Entmagnetisierung) wird selbst mit starken äußeren Feldern nicht erreicht."
Ist das wirklich die gängige Definition von "hartmagnetisch"? Nach meinem Sprachgefühl sind Materialien, aus denen beispielsweise magnetische Speichermedien gemacht sind, hartmagnetisch. Da sie beschreibbar sind, ist eine Ummagnetisierung natürlich möglich.
Meinungen? -- Pemu (Diskussion) 23:09, 18. Jun. 2019 (CEST)
- Mit Meinungen hat das nichts zu tun. Das ist korrekt so, wie es da steht. Hartmagnetische Werkstoffe lassen sich schwer ummagnetisieren, weiche Stoffe leicht. Für mich entspricht das auch dem Sprachgefühl. --Cyberolm (Diskussion) 23:26, 18. Jun. 2019 (CEST)
- Na ja, in gewisser Weise ist ein Sprachgefühl doch eine Meinung. Und der zweite zitierte Satz heißt für mich soviel wie eine Ummagnetisierung ist nicht möglich. Da ein Tonband lösch- und bespielbar ist, besteht es also aus weichmagnetischen Stoffen?
- Ich kenne die allgemein akzeptierte Definition der Grenze zwischen hart- und weichmagnetisch nicht, daher meine Frage hier. -- Pemu (Diskussion) 01:04, 19. Jun. 2019 (CEST)
- Na hart setzt einer Änderung viel Widerstand entgegen, weich wenig, ist doch so, wie man es erwarten würde. Ich kenne mich mit magnetischen Speichermedien nicht besonders aus, aber da spielen ja mehrere Faktoren eine Rolle. Zum einen muss das Material natürlich ummagnetisierbar sein, zum anderen soll es aber auch nicht zu weich sein, damit die Daten auch dauerhaft erhalten bleiben. Ist dann eine Abstimmung zwischen Material und Stärke der Schreib-Leseköpfe. Es würde mich auf jeden Fall nicht wundern, wenn die Materialien im Vergleich eher hart wären, dafür die Schreib-Leseköpfe auf sehr kleiner Fläche ein sehr starkes Feld erzeugen. --Cyberolm (Diskussion) 09:24, 20. Jun. 2019 (CEST)
- Auch hart-magnetische Werkstoffe lassen sich in einem genügend starken Magneten ummagnetisieren. In der Regel ist dieser Schritt bei der Herstellung von Permanentmagneten nötig. D.h. das hart nicht möglich ist falsch, es sollte schon schwer heißen. Gerade Alnico Magnete verlieren sogar relativ leicht ihre Magnetisierung in einem externen Feld, wenn man nicht aufpasst. Die Magentspeicher brauchen in der Regel schon ein gar nicht so schwaches Feld zum beschreiben. Wo die Grenze liegt müsste man noch in einer Quelle nachschlagen--Ulrich67 (Diskussion) 22:16, 22. Jun. 2019 (CEST).
- Meine TF: Es gibt Anwendungen, wo ein möglichst weiches Verhalten erwünscht ist (z. B. Trafo) und solche, wo hartes Verhalten erwünscht ist (Speicher, Dauermagnete). Daher erfolgt die Entwicklung von Legierungen in zwei Extreme, und daher ist ein hier binär gebrauchtes Wortpaar wie "hart" und "weich" sinnig. Ist das plausibel? -- Pemu (Diskussion) 23:55, 22. Jun. 2019 (CEST)
- Eine klar definierte Grenze gibt es natürlich nicht, das hängt von der Anwendung (geforderte Eigenschaften, Temperatur) ab. Bei Speichermedien ist die Unterscheidung imo sinnlos, da sie aus möglichst isolierten magnetischen Partikeln in einer unmagnetischen Matrix bestehen.
- (daß hartmagnetische Stoffe "nicht" ummagnetisiert werden können habe ich gerade mal geändert)
- Gruß, --Maxus96 (Diskussion) 10:33, 23. Jun. 2019 (CEST)
- Danke.
- Das mit "sinnlos" und isolierten Partikeln in unmagnetischer Matrix verstehe ich nicht. Die Partikel sind doch auf jeden Fall so groß, dass sie ferromagnetische Eigenschaften haben. Warum sollte da eine Unterscheidung sinnlos sein? -- Pemu (Diskussion) 22:35, 23. Jun. 2019 (CEST)